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Optimization of Parameter 
Selection for Partial Least Squares 
Model Development
Na Zhao1,2,3, Zhi-sheng Wu1,2,3, Qiao Zhang1,2,3, Xin-yuan Shi1,2,3, Qun Ma1,2,3 &  
Yan-jiang Qiao1,2,3

In multivariate calibration using a spectral dataset, it is difficult to optimize nonsystematic 
parameters in a quantitative model, i.e., spectral pretreatment, latent factors and variable selection. 
In this study, we describe a novel and systematic approach that uses a processing trajectory to select 
three parameters including different spectral pretreatments, variable importance in the projection 
(VIP) for variable selection and latent factors in the Partial Least-Square (PLS) model. The root mean 
square errors of calibration (RMSEC), the root mean square errors of prediction (RMSEP), the ratio 
of standard error of prediction to standard deviation (RPD), and the determination coefficient of 
calibration (Rcal

2) and validation (Rpre
2) were simultaneously assessed to optimize the best modeling 

path. We used three different near-infrared (NIR) datasets, which illustrated that there was more 
than one modeling path to ensure good modeling. The PLS model optimizes modeling parameters 
step-by-step, but the robust model described here demonstrates better efficiency than other 
published papers.

Near-infrared (NIR) Spectroscopy combined with Partial Least-Square (PLS) has gained wide accept-
ance because it is rapid, nondestructive, and environmentally friendly. It has been successfully applied 
to different fields including agriculture1,2, food stuffs3, petrochemistry4, and pharmacy5–7. In addition, 
NIR technology offers sufficient accuracy and precision for solid and liquid systems without any sample 
pretreatment.

However, establishing a reliable and robust PLS model is a vital procedure for successful application 
of NIR. There are many parameters that should be optimized in the PLS model. These include spectral 
pretreatment, variable selection and latent factors. The NIR spectra contain unexpected chemical inter-
ferences related to sampling error, instrument error, etc.

In the process of establishing a PLS model, spectral pretreatment methods have been applied to 
extract relevant information and reduce the effect of noise and baseline drift8,9. Variable selection is 
then also used to identify highly informative features and eliminate useless variables from the original 
spectral dataset10,11. The latent factors that explain the spectral matrix are sorted in decreasing order 
according to their contribution to the spectral features. It is crucial to determine the latent factors and 
avoid over-fitting or under-fitting12,13.

Most published work about PLS models offer few details about the model development. It is assumed 
that there is a univariate used to select these parameters one by one according the root mean square 
error of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP). The 
inter-influence among the three parameters is rarely considered in model development. This is risky 
because the modeling path is not necessarily the best approach to step-by-step optimization.
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Wenlong Li et al. established quantitative methods based on NIR to determine the active compounds 
of Lonicerae Japonicae Flos14. Ioan Tomuta et al. applied NIR for the determination of active pharmaceu-
tical ingredients (API) and pharmaceutical properties including the crushing strength and disintegration 
time of meloxicam tablets15. Nádia Reis et al. developed a quantitative method for multiple adulterants 
in roasted coffee using diffuse reflectance infrared Fourier transform spectroscopy16. Yajie Xi et al. devel-
oped a NIR method to determinate the trace dimethyl fumarate in milk17. In the above reports, spectral 
pretreatment methods were compared according to the predictive performance of the calibration models. 
Using the optimal pretreatment method, latent factors were selected with a cross validation method. The 
optimum wavelength range was then tested and selected based on these pretreatment and latent varia-
bles. Although quantitative models could be obtained, they did not investigate the trajectory routes of 
PLS models that consider the combination of different parameters.

Based on this consideration, we propose a novel and systematic approach to improve the efficiency 
and accuracy in the development of PLS models. The tracking procedure of PLS modeling provided a 
systematic profile that combined different spectral pretreatment methods, latent factors, and the variable 
importance in the projection (VIP) variable selection. The model performance was assessed using the 
root mean square errors of calibration (RMSEC), RMSEP, the determination coefficient of calibration 
(Rcal

2) and validation (Rpre
2) as well as the ratio of standard error of prediction to standard deviation 

(RPD)18,19. To demonstrate the advantage of this novel approach, three different NIR spectral datasets 
were analyzed including two standard and open source datasets. The proposed procedure was used to 
predict water, baicalin, and API in corn, Yinhuang granules, and pharmaceutical tablets, respectively. 
These specific NIR applications were selected because they are important to quality control.

Result
Near-infrared spectral features. The NIR spectra (1,100–2,498 nm) of typical corn samples are 
shown in Fig.  1a. There were several broad peaks located near 1,190, 1,450, and 1,940 nm. These rep-
resent the characteristic peaks regarding the water in the corn spectral dataset. The strong absorption 
bands of water appeared around 1,400–1,450 nm and 1,900–1,950 nm due to the first overtone of OH 
stretching and combination of the OH stretching band with OH bending.

On the other hand, the NIR spectra of Yinhuang granules are shown in Fig.  1b. There was a weak 
absorption in the second overtones region (SCOT, 10,000–7,100 cm−1) of the fundamental CH stretching 
bands. There was much fluctuation in the region of first combination-overtone (FCOT, 7,100–4,900 cm−1) 
and combination region (CR, 4,900–4,000 cm−1). The NIR spectra of pharmaceutical tablets are shown 
in Fig. 1c. As seen in the raw spectra, there were many clear absorption bands of the API from 900 to 
1,630 nm.

There was also severe spectral overlap and baseline drift in the spectra of corn, Yinhuang granules, 
and pharmaceutical tablets. Light scattering affected the raw spectra as well; this depended on the phys-
ical conditions such as particle size, density and variation among lots.

Reference method of three spectral datasets. The response variable was the relative content of 
water in the corn (%, w/w). A detailed description of sample conditions can be found at http://www.
eigenvector.com/data/Corn/index.html. The other standard dataset of pharmaceutical tablets included 
655 samples. The assay values of the API (%, w/w) were used as a reference value.

Baicalin in Yinhuang granules was quantitated with a calibration curve based on the concentration 
range from 25.4 to 50.8 μ g mL−1 of baicalin using consecutive injections of different concentrations. The 
regression equation was y =  20.25x +  35.10 (r =  1.0000) with y being the peak area in mAUs and x being 
the concentration of injection (μ g mL−1). We concluded that high performance liquid chromatography 
(HPLC) was suitable for quantitation. Baicalin concentrations varied 1.61% to 6.66% (mg mg−1). The 
reference values of baicalin were accurate and could be used in NIR models.

The selection of sample sets using three datasets. The Kennard-Stone (K-S) algorithm selected 
the calibration and validation sets. The corn samples included 53 samples for calibration set, and 27 
samples for external validation. In addition, the Yinhuang granule dataset used 48 and 24 samples in the 
calibration and validation sets, respectively. The three different subsets of pharmaceutical tablets were 
used as the calibration set (155), validation set (460), and test set (40). The statistics for water, baicalin, 
and API contents in the calibration, validation, and test sets are summarized in Table 1.

Processing trajectory of PLS model. Using the corn dataset as an example, the calibration spectra 
were preprocessed with different methods including Standard Normal Variate (SNV) and Savitzky-Golay 
smoothing with 9 points (SG(9)), as well as SG(9) combined with the derivative spectra. The latent fac-
tor was set from 1 to 10 to avoid over-fitting. VIP was then used to select variables with different latent 
factors. Finally, the process routines from PLS model development and validation were selected (Fig. 2). 
The parameters for PLS models in water, baicalin and API are shown in Table. 1s-3s. There are various 
trends in the model evaluation indexes. In Fig. 2a, we see that the RMSEC and RMSEP decreased and the 
Rcal

2, Rpre
2, and RPD increased with increasing latent factor coupled with different pretreatment methods.

The model for Yinhuang granules dataset is shown in Fig. 2b. This was different from the corn dataset 
model. The Yinhuang granules dataset model used first derivative spectra (1D) combined with SG(9) and 

http://www.eigenvector.com/data/Corn/index.html
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Figure 1. Raw NIR spectra of corn sample (a), Yinhuang granules sample (b) and pharmaceutical tablets 
sample (c).
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Figure 2. Schematic diagram of processing trajectory and assessment of PLS model corn samples (a), 
Yinhuang granules samples (b) and pharmaceutical tablets sample (c).
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Figure 3. Schematic diagram of processing trajectory of PLS model corn samples (a), Yinhuang granules 
samples (b) and pharmaceutical tablets sample (c).
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Figure 4. Correlation between the prediction and reference values of corn samples (a), Yinhuang 
granules samples (b) and pharmaceutical tablets sample (c).
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SNV to preprocess the spectra. This was superior to other spectra pretreatment methods in which the 
various trends of the model evaluation indexes were unclear. The model for pharmaceutical tablets is 
shown in Fig. 2c. Changes in model evaluation indexes were not obvious when the latent factor increased 
to a certain value.

However, this result showed that there was more than one modeling path that can ensure a successful 
model. There were two fair PLS models with RPD between 2.5 to 3 (Fig. 3a) including: 1) a combina-
tional method of SG(9) spectral pretreatment, VIP, and 10 factors, and 2) a combinational method using 
the second derivative spectra (2D) combined with SG(9) spectral pretreatment, VIP, and 10 factors. 
Most of PLS models were fair and there were also some good model paths with RPD values greater 
than 3 (Fig. 3b). In Fig. 3c, there were many models with good performance that adopted a processing 
trajectory.

In the previous modeling process routine, the parameters included spectral pretreatment methods, 
variable selection and latent factors were optimized one at a time. Table 4s shows that this is a good 
approach to path modeling versus step-by-step parameter optimization. The optimal nonsystematic 
parameters of the water PLS model were the raw spectra and VIP-selecting variables under 7 factors; 
the model performance was poor. However, processing trajectory showed that two fair model could be 
obtained through combinational methods using SG(9) pretreatment, VIP, and 10 factors as well as a com-
binational method of 2D +  SG(9) pretreatment, VIP, and 10 factors. The best nonsystematic parameter 
combination for the baicalin PLS model was SNV pretreatment and VIP-selecting variables under 4 fac-
tors. This gave good model performance. However, the processing trajectory showed eight good models 
with different systematic parameter combinations. The best parameter combination of the baicalin PLS 
model was a SNV spectra pretreatment with VIP-selecting variables under 3 factors.

The parameter combination for the API model used raw spectra with VIP-selecting variables under 4 
factors. These were optimized one by one. The model performance was very good. However, there were 
18 very good models and 5 excellent models with RPD values above 4 that were obtained by processing 
trajectory. The best parameter combination for the PLS models were SG(9) spectra pretreatment and VIP 
selecting variables under 10 factors.

The best models were obtained through a step-by-step optimization and processing trajectory that 
was tested with a test set of 40 independent samples. The RMSEP of the two models were 0.7904% and 
0.5681%, respectively. This demonstrated that the model obtained through the processing trajectory was 
better than the model optimized step-by-step. This illustrates that the best systematic optimal model 
parameters were obtained via the processing trajectory.

Development and validation of calibration models. The model validity was characterized with 
RMSEC, RMSEP, Rcal

2, Rpre
2, and RPD. Taking the calibration model of the corn dataset as an example, 

Fig. 2a showed that the PLS model of water with SG(9) pretreatment and VIP-selecting variables under 
10 factors had the best performance. The RMSEC and Rcal

2 of the calibration set were 0.1042% and 
0.9321, respectively. The RMSEP was 0.1256% – quite close to RMSEC. The RPD and Rpre

2 of the vali-
dation set were 2.6387 and 0.8554, respectively. These results demonstrated that the PLS model of water 
also had a good predictive performance.

Similarly, we developed the PLS model of baicalin with SNV spectral pretreatment and VIP-selecting 
variables under 3 factors. The RMSEC and Rcal

2 of the calibration set were 0.5609% and 0.8250, respec-
tively. The RMSEP, Rpre

2 and RPD of the baicalin validation set were 0.3524%, 0.9066, and 3.2723, respec-
tively. The model of API with SG(9) pretreatment and VIP-selecting variables under 10 factors was also 
established. The RMSEC and Rcal

2 of the calibration set were 1.0048% and 0.9706. The RMSEP, Rpre
2 and 

RPD of the API validation set were 0.9581%, 0.9493, and 4.4581, respectively.
Figure 4 presents data for the PLS models using three datasets. The prediction values were quite close 

to the wet analysis. The parameters for water, baicalin and API models indicated that NIR could be used 

Analyte sample set
sample 
number Min(%) Max(%) Mean(%) SD(%)

corn
calibration 53 9.38 10.98 10.22 0.41 

validation 27 9.67 10.99 10.25 0.34 

Yinhuang granules
calibration 48 1.61 6.43 3.94 0.02 

validation 24 2.04 6.66 3.60 1.18 

pharmaceutical tablets

calibration 155 40.30 63.70 50.78 5.88 

validation 460 41.10 63.30 49.76 4.26 

test 40 50.20 52.40 51.71 0.54 

Table 1.  The statistic of water, baicalin and API contents in the calibration and validation sets.
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for the determination of water, baicalin, and API of corn, Yinhuang granules, and pharmaceutical tablets, 
respectively.

Discussion
We proposed the use of processing trajectory to develop and optimize multivariate calibration models. 
The PLS models were established with different spectral pretreatments and VIP variable selection meth-
ods with different latent factors. Based chemometric indicators (RMSEP, RMSEC, Rcal

2, Rpre
2 and RPD), 

different PLS models were used to assessed the water, baicalin , and API in corn, Yinhuang granules and 
pharmaceutical tablets, respectively. The present work demonstrates the feasibility and advantages of pro-
cessing trajectory in the development and optimization of multivariate calibration models. In conclusion, 
a systematic procedure for model optimization based on the processing trajectory shows excellent results 
to develop a robust model. The proposed approach should be integrated into PLS software to improve 
on the available PLS models.

Methods

Datasets. Corn spectral dataset. NIR diffuse spectra of corn were obtained from the website as stand-
ard data (http://www.eigenvector.com/data/Corn/index.html)20. The dataset consists of 80 corn samples. 
The NIR spectra of corn samples were measured with three spectrometers; the moisture content was 
included (%, w/w). The spectra were measured with a mp5 NIR spectrometer and the water values were 
used as reference value. The spectral acquisition range was 1,100–2,498 nm at 2 nm intervals resulting in 
a total of 700 variables per sample.

Yinhuang granules spectral dataset. The dataset consists of diffuse reflectance NIR spectra with 72 
Yinhuang granule samples. The response variable was the relative content of active baicalin in the gran-
ules (%, w/w). The baicalin content was measured with HPLC as described in the Ch.P. (2010 Edition, 
Volume I). We used an Agilent 1100 HPLC system (Agilent Technologies, USA) with a vacuum degasser, 
a quaternary pump, an auto sampler, a thermostatic column compartment, and a diode array detector 
(DAD). Separation was performed on an ODS column (150 mm, 4.6 mm, 5 mm, Waters, USA) with iso-
cratic elution of the mobile phase consisting of methanol, water and phosphoric acid (50:50:0.2, v/v) at a 
flow rate of 1.0 mL/min. The column temperature was 30 °C, and the detection wavelength was 274 nm.

The NIR spectra were collected in an integrating sphere diffuse mode with an Antaris Nicolet FT-NIR 
system (Thermo Fisher Scientific Inc., USA). Each sample spectrum was the result of 32 scans from 
10,000 to 4,000 cm−1 (a total of 1557 wavenumber variables per sample) at ambient temperature using 
8 cm−1 resolution. Every sample was scanned three times, and the final spectrum used for each sample 
was an average of the three results. All NIR spectra were collected and archived using the Thermo 
Scientific Result software.

Pharmaceutical tablets spectral dataset. The dataset for the pharmaceutical tablets was available at 
http://www.eigenvector.com/data/tablets/index.html. It contains 1,308 spectra of 655 pharmaceutical 
tablets measured on two similar instruments (Foss/NIR Systems Multitab Spectrometers). The spectral 
region was from 600 to 1,898 nm with 2 nm increments. The data of each instrument were organized into 
three different subsets. The assay value of the active ingredient, tablet weight, and tablet hardness were 
provided. In this work, we used the spectra of the first instrument and the assay values of the API (%, 
w/w). There were three different sets of 155, 460, and 40 spectra that were used as calibration, validation, 
and test sets in this study, respectively.

Multivariate data analyses. The spectra pretreatment and model development were performed with 
Unscrambler 9.7 software package (CAMO Software AS, Norway). The VIP-based variable selection meth-
ods were implemented with custom routines in MATLAB (MATLAB, The MathWorks, Massachussetts).

Summary of the proposed procedure. The procedure we used to track and evaluate modeling processes 
with different spectral pretreatment methods, latent factors, and VIP variable selection is summarized in 
Fig. 2 and is detailed in the following section.
Step 1. The modeling parameters and their levels were defined, which contained spectral pretreatment 
methods, latent factors, and variable selection methods.
Step 2. The evaluation indexes of model were established to include RMSEC, Rcal

2, RMSEP, and Rpre
2. 

Important parameters for the RPD were also included to assure the model assessment.
Step 3. The calibration and validation data sets were selected to ensure that both datasets were represent-
ative of the experimental design.
Step 4. We ran the PLS models established for all systematic parameters optimization. The results for the 
evaluation indexes of each model were registered.
Step 5. The results were analyzed, and the trajectory routes for PLS modeling were defined.

http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/tablets/index.html
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Step 6. PLS model was established at the best systematic optimization of parameters. When necessary, the 
model was further refined to exclude samples with higher spectral and concentration residuals.
Step 7. The model was applied to routine analysis and was continuously monitored to check for needed 
updates.

Multivariate calibration. The PLS was used to build calibration models. First, the K-S algorithm was 
used to split the data set into calibration and validation sets (2:1) such that the samples could be selected 
to represent the entire experimental domain. We used spectral pretreatment to decrease baseline shifts 
and remove the scattering effect created by diffuse reflectance and overlapping peaks. These caused det-
rimental effects on the signal-to-noise ratio. We used SNV, SG(9), and SG(9) combined with derivative 
spectra to remedy this. Meanwhile, VIP was utilized to select variables for identifying highly informative 
features21. The performance of the regression models was evaluated in terms of the Rcal

2 and RMSEC. The 
prediction ability of the external validation was assessed by RMSEP, Rpre

2 and RPD.
Generally, the optimal number of latent factors was determined from the result of 10-fold cross validation 

tests after spectral pretreatment. The VIP variable selection algorithms were then used to select the charac-
teristic variables. The ideal methods for spectral pretreatment, the number of latent factors and models were 
selected based on the RMSEC, RMSEP, Rcal

2, Rpre
2, RPD, etc. Unlike the previous method, this approach uses 

the global optimal strategy and trajectory routes of all possible parameter combinations.
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