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It is imperfect to evaluate a subsampling variable selection method using only its prediction performance. To fur-
ther assess the reliability of subsampling variable selection methods, dummy noise variables of different ampli-
tudes were augmented to the original spectral data, and the false variable selection number was recorded. The
reliabilities of three subsampling variable selection methods including Monte Carlo uninformative variable elim-
ination (MC-UVE), competitive adaptive reweighted sampling (CARS), and stability CARS (SCARS) were evaluated
using this dummy noise strategy. The evaluation results indicated that both CARS and SCARS produced more par-
simonious variable sets, but the reliabilities of their final variable sets were weaker than those of MC-UVE. On the
contrary, only marginal improvement on the prediction performance was obtained using MC-UVE. Further exper-
iments showed that removing white noise-like variables beforehand would improve the reliability of variables ex-
tracted by CARS and SCARS. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Near-infrared (NIR) spectroscopy is a powerful and rapid an-
alytical technique and has become a widespread tool for the
analysis of agricultural, petroleum, chemical, and pharmaceu-
tical samples [1–4]. During these analyses, one of the most
crucial tasks is to construct a reliable model to handle the
collinearity of the NIR spectra. Here, partial least squares
(PLS) regression is the most effective and commonly used
method. Generally, the established calibration model in-
cludes all measured wavelengths. From a statistical or data
analysis perspective, it is quite difficult for even the experi-
enced spectroscopists to determine the wavelengths that
should be retained in calibration models. Variable selection
methods that were originally designed to extract the most
pertinent wavelengths from the full spectrum have drawn
considerable attention in recent quantitative analyses. Both
experimental and theoretical applications have demon-
strated that the prediction and interpretation performance
of the calibration model can be improved through variable
selection [5–11].
In chemometrics, there are several methods to extract perti-

nent wavelengths [12,13]. However, when the calibration sam-
ples change, the selected wavelengths can hardly be
consistent. Variable selection methods using re-sampling tech-
niques can slightly reduce the variation in the variable set
caused by changes in the calibration set. One such method is
the Monte Carlo uninformative variable elimination (MC-UVE)
[14]. Rather than adding random noise variables to estimate
the cutoff value, MC-UVE determines the threshold directly by
using the stability calculated with the Monte Carlo sampling
(MCS) strategy. Competitive adaptive reweighted sampling
(CARS) reduces the variation caused by changes in the calibra-
tion set by implementing an adaptive reweighted sampling

[15]. Stability CARS (SCARS) [16] modifies the raw CARS to cre-
ate a more parsimonious and reasonable model.

Generally, variable selection methods are evaluated using
prediction accuracy, but studies on the reliability of subsam-
pling variable selection methods are rare. In addition, the
random errors in routine NIR analysis can generally be reduced
but not eliminated. The suspicion on the reliability of subsam-
pling methods cannot be eliminated if noise variables exist in
the final variable set. Thus, white noise variables that mimicked
the behavior of spectral variance caused by random error were
used to evaluate the effectiveness and reliability of the different
subsampling variable selection methods. Each of the three
Monte Carlo based subsampling variable selection methods
was repeated 500 times to give a stable result because
repeated cross-validation in small-sample settings is less
affected by the error-counting problem [17]. The proposed
approach was tested on three datasets. It is clear that our
approach reveals the illusive effect of noise-like variables on
the reliability of subsampling variables selection methods.
Therefore, it is suggested to remove noise-like variables
beforehand to enhance the reliability of variable selected and
thus the final analytical determination.
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2. METHODS

2.1. Monte Carlo uninformative variable elimination

In linear regression, a calibration model is expressed as follows:

y ¼ Xβ þ e (1)

here, X is a column-centered n× p matrix containing p spectral
responses of n samples. Both y and e are n×1 vectors, and β is
a p×1 vector of the regression coefficients.

For spectral data, the regression coefficients estimated by
using the PLS model are preferable. Thus, only the PLS model
is considered. Typically, the original PLS model is constructed
by using all measured spectral variables. However, the noise var-
iables or the other variables containing irrelevant information
may deteriorate the accuracy of the PLS model. Centner et al.
proposed the UVE-PLS approach to eliminate the negative effect
of the uninformative variables. Similar to UVE-PLS, MC-UVE [9,14]
calculates the reliability of each variable to sieve out the uninfor-
mative variables, but the regression vectors are estimated with
the calibration subset sampled by N MCS runs. This forms the re-
liability criterion c defined as follows:

cj ¼
βj

s βj
� � ; j ¼ 1; 2;…; p (2)

with

s βj
� �

¼ ∑
N

i¼1

βij � βj
� �2

N � 1

0
B@

1
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1=2

where cj is the reliability (i.e., stability) of the jth wavelength. The
term βij denotes the regression coefficient of variable j in the PLS
model of the ith MCS; βj and s(βj) are the mean and the standard
deviation of all βij for the jth wavelength, respectively.

With this sorted stability, certain informative variables are se-
lected to construct the final PLS model. The number of informa-
tive variables can be optimized by changing the number of
variables used.

2.2. Competitive adaptive reweighted sampling

CARS considers the variability of the regression coefficients
caused by the variation in the calibration set via a Monte Carlo
strategy. In each run of CARS, a certain number of samples are
selected to form the current calibration set. By adopting dual
elimination procedures, that is, enforced wavelength reduction
and adaptive reweighted sampling (ARS), redundant variables
can be repeatedly eliminated. The entire algorithm is briefly
outlined here. For details, please refer to [15].

At the very beginning of the CARS algorithm, a subset of n
samples is selected by MCS to estimate the regression coefficient
β. In order to evaluate the importance of the ith variable, a nor-
malized weight is defined as follows:

wi ¼ βij j
∑pi¼1 βij j ; i ¼ 1; 2; 3;…; p (3)

During the enforced wavelength reduction step, the ratio of
the variables remaining in the jth sampling run is updated using
the following function:

rj ¼ ae�kj (4)

with constants defined by the following two equations:

a ¼ p
2

� �1= N�1ð Þ

and

k ¼ ln p=2ð Þ
N � 1

The ratio filters the variables that are less important. Informa-
tive variables are retained in the final variable subset, although
the definition of the ratio function is not directly related to the
importance of each variable. Based on the sorted variables
retained, the ARS procedure further condenses the variables
subset.
The aforementioned steps are sequentially repeated N times.

In each run, the root mean square error (RMSE) of the cross-
validation (RMSECV) is calculated for the current variable subsets.
Finally, the subset with the lowest RMSECV is selected as the op-
timal variable subset. The RMSE calculation is provided as
follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
yi � ŷ ið Þ2

r
(5)

where for cross-validation, yi is the reference property value for
the ith sample of the calibration set, ŷ i is the predicted property
value of the ith sample in the calibration set, and n is the number
of samples. For the root mean square of prediction (RMSEP), yi is
the reference value for the ith sample in the prediction set, and
ŷ i is the predicted value of the ith sample in the prediction set.

2.3. Stability competitive adaptive reweighted sampling

The overall framework of SCARS [16] is similar to that of
CARS, except that important variables are defined as the var-
iables with large stability. SCARS selects N subsets of informa-

Figure 1. The raw spectra of corn dataset for protein (a) and starch (b)
together with Yin H. (c).
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Figure 2. The augmented spectra data for protein, starch, and Yin H. samples in noise scale varying among 10�1, 10�2, 10�4, 10�6, 10�8, and 10�10.
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tive variables in a stepwise manner by using N iterative loops.
Initially, all variables are embedded in the survival variable
subset. During each loop, SCARS randomly selects nsam sam-
ples M times. The stability of each variable is computed with
Equation (2). Then, the enforced wavelength selection and
ARS procedure remove uninformative variables. A PLS model
is built, and RMSECV is calculated for each variable subset.
The variable subset with smallest RMSECV is selected as the
final subset.

Although the stability criterion adopted in SCARS is the
same as that for MC-UVE, the prediction performance of
SCARS improves markedly versus MC-UVE.

3. EXPERIMENTAL

3.1. Datasets

Three datasets were used to investigate the reliabilities of the
aforementioned subsampling methods. Two can be downloaded
from http://www.eigenvector.com/data/Corn/index.html. Each
downloaded dataset contains 80 NIR spectra for 80 corn sam-
ples. Every spectrum covered 1100–2498 nm at 2-nm intervals.
The spectra measured onm5 were modeled to predict the starch
content of corn samples, while the prediction accuracy of the
protein content of the corn samples was investigated using
spectra collected on mp5. All spectral data were mean centered,
and no extra preprocessing was performed. An overlay plot of
the original spectra was shown in Figure 1(a, b).
The other dataset [18] contains 68 NIR spectra from Yin Huang

Granule (Yin H.) samples, which were manufactured by JXJM Co.,
Ltd. (Jiang Xi, China). The NIR spectra were collected at 8 cm�1 inter-
val over the spectral range from 10,000 to 4000 cm�1 using Antaris
FT-NIR System (Thermo Scientific, Madison, WI, USA) equipped with
an integrating sphere system. Each samplewas analyzed in triplicate,
with spectra obtained by averaging 32 scans. Assay values were
determined by high-performance liquid chromatography. The raw
NIR spectra of Yin H. samples were shown in Figure 1(c).
The dummy noise matrix [19,20] was created as follows: First,

the means of the calibration absorbance spectra were digitally
duplicated n times (n denotes the number of calibration
samples) and converted to reflectance mode. White noise at dif-
ferent levels was then added to the reflection units. Finally, the
contaminated spectra in reflectance mode were converted back
to absorbance mode. The augmented spectra at different noise
levels were presented in Figure 2.

3.2. Software

All calculations were performed on a PC equipped with an
i7-processor using MATLAB (MathWorks, Natick, MA, USA)

Figure 3. A comparison between the root mean square error of the
cross-validation (RMSECV) curve of raw spectra data and that of the aug-
mented (Aug.) data. LVs, latent variables.

Table I. The prediction performance of PLS, CARS, SCARS, and MC-UVE on three augmented datasets in terms of RMSECV, RMSEP,
TNVS, and NDNV

Data Method RMSECV RMSEP NDNV TNVS

Protein PLS 0.1248 0.1713 700 400
CARS 0.0517 (0.0064) 0.1708 (0.0176) 32 (11) 76 (25)
SCARS 0.0687 (0.0091) 0.1624 (0.0173) 12 (6) 58 (42)
MC-UVE 0.1237 (0.0082) 0.1572 (0.0041) 0 80 (30)

Starch PLS 0.2982 0.1983 700 400
CARS 0.1239 (0.0132) 0.1954 (0.0323) 9 (6) 45 (18)
SCARS 0.1622 (0.0232) 0.1548 (0.0541) 0 2 (16)
MC-UVE 0.3318 (0.1384) 0.3043 (0.0455) 0 70 (50)

Yin H. PLS 0.0067 0.0069 1557 3114
CARS 0.0061 (6.1733a) 0.0066 (8.3944a) 0 6 (4)
SCARS 0.0061 (2.0309a) 0.0068 (5.7971a) 0 2 (17)
MC-UVE 0.0073 (7.5698b) 0.0069 (2.0593b) 0 50 (150)

In the parenthesis is the interquartile range of 500 repeated runs.
PLS, partial least squares; CARS, competitive adaptive reweighted sampling; SCARS, stability CARS; MC-UVE, Monte Carlo
uninformative variable elimination; RMSECV, root mean square error of the cross-validation; RMSEP, root mean square of
prediction; TNVS, total number of variables selected; NDNV, number of dummy noise variable.
aIndicates the order of magnitude is 10�5.
bIndicates the order of magnitude is 10�4.
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running Windows 7 Professional operating system. The MC-UVE,
CARS, and SCARS functions were obtained from or were modifi-
cations of functions in the toolbox downloaded from http://
code.google.com/p/carspls/. The Kennard–Stone function
employed was written with MATLAB.

4. RESULTS AND DISCUSSION

4.1. Data augmented with noise variables

Both the corn spectra and the Yin H. spectra were augmented
with dummy noise spectra. The deviation of the dummy spectral
variables was fixed at 10�4 based on the variance of repeatedly
measured spectra. Each augmented dataset was split into two in-
dependent datasets by the Kennard–Stone algorithm [21]. Spe-
cifically, the corn data were split into 60 against 20, that is, 60
for the calibration set and 20 for the test set. The Yin H. samples
were split into 45 calibration samples and 23 testing samples.
The effectiveness and reliability of the three Monte Carlo

subsampling variable selection methods were investigated using
these datasets.

As shown in Figure 3, the RMSECV curve decreased gradu-
ally with increasing latent variables (LVs) until it plateaued
near nine LVs. The RMSECV curves of the augmented spectra
data nicely approach those of the raw data. In other words,
there was no significant difference between the RMSECV
curves of the augmented and the raw datasets. This means
that the noise variables have a limited effect on the predic-
tion ability of the augmented PLS model. Therefore, the max-
imum number of LVs in the (S)CARS algorithm and MC-UVE
algorithm were set at nine for the corn datasets. Similarly,
the maximum number of LVs allowed in the (S)CARS algo-
rithm and MC-UVE algorithm were set at three for the Yin
H. samples. The corresponding regression vectors were then
used to predict the assay values of samples in the test sets.

During CARS run, a 10-fold cross-validation and 100 times
MCS were executed using parameters from the literatures
[15,16]. The entire CARS procedure was repeated 500 times.
Meanwhile, most of the parameters adopted in the SCARS

Figure 4. The boxplots of four investigated methods on protein dataset with noise in different scales. The root mean square error of the cross-valida-
tion (RMSECV), root mean square of prediction (RMSEP), total number of variables selected (TNVS), and number of dummy noise variable (NDNV) met-
rics were repeatedly calculated 500 times. CARS, competitive adaptive reweighted sampling; SCARS, stability CARS; MC-UVE, Monte Carlo uninformative
variable elimination; PLS, partial least squares.
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algorithm were determined similar to that of CARS. Addition-
ally, 36 calibration samples were randomly selected to esti-
mate the stability of the SCARS algorithm, and the number
of MCS per loop was set to 100. For the MC-UVE algorithm,
45 calibration samples were randomly selected per sampling
run. To optimize the number of variables selected in the final
model, a serial number of variables ranging from 20 to 300 at
increments of 10 were investigated. In addition, the number
of variables remaining in the final model and the number
of the pure noise part (false variable selection number) were
recorded for each run in the three subsampling method. The
median, rather than mean, of each indicator was presented in
Table I because the median is more robust than the mean.

The number of variables remaining in the final model of the
MC-UVE had a median value of 180 for protein data (Table I).
Among them, there was no dummy noise variable, and its pre-
diction performance improved to some extent versus the plain
PLS model in terms of RMSEP. The RMSECV median value of
SCARS method decreased markedly from 0.1248 to 0.0517.

Unfortunately, a certain number of selected variables were
dummy noise. Therefore, it was difficult to be confident in the
variables selected using SCARS. For CARS, both the median
values of RMSECV and RMSEP decreased markedly versus the
raw PLS model. However, dummy noise variables still existed in
the final variable set. These results led us to conclude that MC-
UVE was more acceptable than the CARS and SCARS method in
terms of the reliability of the final variable set. Moreover, the dif-
ference between RMSECVs and RMSEPs in CARS and SCARS was
large. Therefore, even RMSECV can be an unbiased estimate of
the prediction ability of the calibration model. It may be more
sensitive to the noise-like variables.
From the results presented in Table I for the starch data, it can

be observed that CARS performed no worse than the plain PLS
algorithm. SCARS outperformed the other two Monte Carlo-
based subsampling methods because there was no dummy
noise in the final variable set. The prediction performance of
SCARS improved markedly versus the plain PLS model. Although
no improvement was obtained with the MC-UVE method, there

Figure 5. A comparison among the performance of three Monte Carlo-based methods on the starch data augmented with noise varying from 10�1 to
10�10. Subplots (A), (B), (C), and (D) correspond to the results of competitive adaptive reweighted sampling (CARS), stability CARS (SCARS), Monte Carlo
uninformative variable elimination (MC-UVE), and partial least squares (PLS), respectively. RMSECV, root mean square error of the cross-validation;
RMSEP, root mean square of prediction; TNVS, total number of variables selected; NDNV, number of dummy noise variable.
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was no dummy noise variable in the final variable set. These re-
sults supported our previous conclusion that the variables se-
lected by MC-UVE were reliable but that its efficiency should
be improved. Furthermore, noise variability may be one of the el-
ements that contributed most to the imbalance between
RMSECV and RMSEP.
The results obtained on Yin H. data indicated that the RMSECV

median is comparable to RMSEP when there was no dummy
noise-like variable in the final variable set. Together with the re-
sults of protein and starch data, it can be concluded that model-
ing strategies matter more than the ranking function.

4.2. Data augmented with noise in different scales

Dummy noise matrixes in different amplitudes were aug-
mented to the original dataset to consider the scale effect.
The MC-UVE, CARS, and SCARS methods were adopted to select
informative variables in this noisy context. The parameters, es-
pecially the number (or maximum number) of LVs, were the
same as those in Section 4.1 because it was assumed that the
noise variables mainly contribute to the last LVs and the contri-
bution of the last LVs was limited (Figure 3).

As shown in Figure 4, the results of the four investigated
methods using data augmented with noise drawn randomly
from the open interval (0, 1) were far less than satisfactory.
The variables selected by the CARS method were nearly all
noise variables. Worse still, noise variables appeared in the
variable set selected by MC-UVE (Figures 4(C) and 5(C)). For-
tunately, random variation in this scale was rare.

When the noise amplitude dropped to 10�4, the median RMSEP
values of CARS and SCARS decreased drastically to 0.1911 and
0.1823, respectively (Figure 4). Meanwhile, the median RMSECV
values for CARS and SCARS reached their minimum, which seemed
more satisfactory than that of the plain PLS. However, a significant
part of the selected variables was the dummy noise variable. This
suggested that the corresponding model has a poor reliability.

The dummy noise variable could be excluded completely if
the noise amplitude continued to drop. Moreover, both the
median RMSECV and RMSEP values became stable. Therefore,
noise with relative small amplitude did not alter the final results
significantly. But, caution must be taken when the RMSECV met-
rics was used to evaluate the prediction performance. Although
the variable selected by MC-UVE was reliable, limited improve-
ment in prediction performance was seen. The boxplots also

Figure 6. A summary of the results obtained from four investigated methods on Yin H. data. For details, refer to Figure 5.

Evaluating the reliability of spectral variables

J. Chemometrics 2015, 29: 87–95 Copyright © 2014 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

93



show that the RMSECV median is comparable to that of RMSEP
when there was no dummy noise-like variable in the final vari-
able set. Similar conclusions could be drawn from the metrics
calculated from the starch data (Figure 5).

Figure 6 is a graphical comparison of the PLS results on
variables selected by MC-UVE, CARS, and SCARS. No dummy
noise variable appeared in the variable set selected by
MCUVE (Figure 6(C)), which adds confidence to this approach.
With a small number of variables selected with CARS and
SCARS, the PLS model behaved as well as the full spectrum
PLS model. Furthermore, both the CARS and SCARS methods
resisted all the noise variables when the amplitude was
below 10�2.

These results support previous assumptions that the
RMSECV metric is more sensitive to the noise-like variables.
Furthermore, unavoidable noise variation can make the
RMSECV more satisfied than expected. SCARS is an embed-
ding backward elimination strategy that performs better than
MC-UVE in terms of prediction performance. But the reliability
of the variables selected by SCARS is weaker than that of MC-
UVE. For reliability, CARS performed no better than SCARS, al-
though the absolute value of regression coefficients was used
to rank features in CARS. Because the variance of repeatedly
measured spectra is about 10�4, it is better to remove poten-
tially false informative wavelengths before the CARS or SCARS
approach is used.

4.3. Data preselected by MC-UVE

Although the variables selected by CARS and SCARS are more
parsimonious and predictable than those from MC-UVE, their re-
liability must be improved. Thus, all the three datasets were
pretreated by MC-UVE. In this section, each spectral dataset
was augmented with a noise matrix (Section 4.1). The number
of variables remaining in the final set of the MC-UVE was directly
set at 400 for the corn data and 1000 for Yin H. data because MC-
UVE was used as a rough filter. The RMSECV curves of the PLS
model constructed with the three reduced datasets plateaued
near eight, seven, and three LVs, respectively. Therefore, the
maximum number of LVs was fixed at eight, seven, and three
for both CARS and SCARS. The other parameters remained the
same as in Section 4.1.

There was no dummy noise variable in the variable sets se-
lected by CARS and SCARS for all three datasets (Table II). The dif-
ference between RMSECV and RMSEP median values for the
reduced protein data was decreased. This means that with the
dummy noise-like variables removed by MC-UVE, the reliability
of the final models improved. For the starch data, however, the
models constructed by applying SCARS on the reduced data
were obviously worse than those of the augmented data (Table I).
A more predictable variable selection method should probably
be integrated. These observations led us to the conclusion that
the reliability of variables selected by CARS or SCARS can be im-
proved when they are coupled with MC-UVE.

5. CONCLUSIONS

The dummy noise variable was used as an indicator to evalu-
ate the reliability of the variables selected by a subsampling
variable selection method. A comparison study of the reliabil-
ities of the three Monte Carlo-based subsampling methods il-
lustrated that the variables selected by MC-UVE were more
reliable than those selected by CARS and SCARS. However,
applying SCARS or CARS to spectral data produced more par-
simonious and predictable variable sets. The results of adding
different levels of normally distributed noise to the mean of
the spectra clearly illustrated that the dummy noise variable
nicely satisfies the RMSECV metrics than expected. Moreover,
the reliability of the variables selected by CARS or SCARS
could be improved when they were coupled with MC-UVE.
In other words, removing noise-like variables beforehand will
be beneficial for improving the reliability of variables ex-
tracted separately by CARS and SCARS. Random error in rou-
tine NIR analysis can generally be reduced but not
eliminated. Thus, removing noise-like variable beforehand will
be also beneficial for reducing the potential side effects
caused by random error.

Acknowledgements

The authors would like to thank the anonymous reviewers for their
kind and insightful comments. Financial supports from the Joint
Development Program Supported by Beijing Municipal Education

Table II. The performance of PLS, CARS, and SCARS on the datasets reduced by using MC-UVE

Data Method RMSECV RMSEP NDNV TNVS

Protein PLS 0.1391 0.1819 0 400
CARS 0.1046 (0.0015) 0.1559 (0.0059) 0 20 (8)
SCARS 0.1052 (0.0023) 0.1571 (0.0095) 0 16 (7)

Starch PLS 0.3397 0.2608 0 400
CARS 0.1697 (0.0094) 0.1948 (0.0217) 0 17 (4)
SCARS 0.2324 (0.0193) 0.2585 (0.0399) 0 10 (8)

Yin H. PLS 0.0068 0.0069 0 1000
CARS 0.0062 (4.8705a) 0.0066 (7.7733a) 0 6 (4)
SCARS 0.0061 (2.1731a) 0.0068 (6.4518a) 0 12 (31)

In the parenthesis is the interquartile range of 500 repeated runs.
PLS, partial least squares; CARS, competitive adaptive reweighted sampling; SCARS, stability CARS; MC-UVE, Monte Carlo
uninformative variable elimination; RMSECV, root mean square error of the cross-validation; RMSEP, root mean square of
prediction; TNVS, total number of variables selected; NDNV, number of dummy noise variable.
aIndicates the order of magnitude is 10�5.

Z. Lin et al.

wileyonlinelibrary.com/journal/cem Copyright © 2014 John Wiley & Sons, Ltd. J. Chemometrics 2015, 29: 87–95

94



Commission—Key Laboratory Construction Project and the gradu-
ate research projects of Beijing University of Chinese Medicine (no.
2013-JXBZZ-XS-112) are gratefully acknowledged. The computa-
tion was partially supported by CHEMCLOUDECOMPUTING
(Beijing University of Chemical Technology, Beijing, China).

REFERENCES
1. Lee M-J, Seo D-Y, Lee H-E, Wang I-C, Kim W-S, Jeong M-Y Choi

GJ. In line NIR quantification of film thickness on pharmaceutical
pellets during a fluid bed coating process. Int. J. Pharm. 2011;
403: 66–72.

2. Kohonen J, Reinikainen S-P Höskuldsson A. Block-based approach to
modelling of granulated fertilizers’ quality. Chemom. Intell. Lab. Syst.
2009; 97: 18–24.

3. Pomerantsev AL, Rodionova OY, Melichar M, Wigmore AJ
Bogomolov A. In-line prediction of drug release profiles for pH-
sensitive coated pellets. Analyst 2011; 136: 4830–4838.

4. Ricci C, Eliasson C, Macleod N, Newton P, Matousek P Kazarian S.
Characterization of genuine and fake artesunate anti-malarial tablets
using Fourier transform infrared imaging and spatially offset Raman
spectroscopy through blister packs. Anal. Bioanal. Chem. 2007; 389:
1525–1532.

5. Smit S, van Breemen MJ, Hoefsloot HCJ, Smilde AK, Aerts JMFG de
Koster CG. Assessing the statistical validity of proteomics based bio-
markers. Anal. Chim. Acta 2007; 592: 210–217.

6. Roger JM, Palagos B, Bertrand D Fernandez-Ahumada E. CovSel: var-
iable selection for highly multivariate and multi-response calibration:
application to IR spectroscopy. Chemom. Intell. Lab. Syst. 2011; 106:
216–223.

7. Liu F, He Y Wang L. Determination of effective wavelengths for dis-
crimination of fruit vinegars using near infrared spectroscopy and
multivariate analysis. Anal. Chim. Acta 2008; 615: 10–17.

8. Liebmann B, Friedl A Varmuza K. Determination of glucose and eth-
anol in bioethanol production by near infrared spectroscopy and
chemometrics. Anal. Chim. Acta 2009; 642: 171–178.

9. Han Q-J, Wu H-L, Cai C-B, Xu L Yu R-Q. An ensemble of Monte Carlo
uninformative variable elimination for wavelength selection. Anal.
Chim. Acta 2008; 612: 121–125.

10. Rossi F, Francois D, Wertz V, Meurens M Verleysen M. Fast selection
of spectral variables with B-spline compression. Chemom. Intell.
Lab. Syst. 2007; 86: 208–218.

11. Brás LP, Lopes M, Ferreira AP Menezes JC. A bootstrap-based strat-
egy for spectral interval selection in PLS regression. J Chemom.
2008; 22: 695–700.

12. Balabin RM Smirnov SV. Variable selection in near-infrared spectros-
copy: benchmarking of feature selection methods on biodiesel data.
Anal. Chim. Acta 2011; 692: 63–72.

13. Xiaobo Z, Jiewen Z, Povey MJW, Holmes M Hanpin M. Variables se-
lection methods in near-infrared spectroscopy. Anal. Chim. Acta
2010; 667: 14–32.

14. Cai W, Li Y Shao X. A variable selection method based on uninforma-
tive variable elimination for multivariate calibration of near-infrared
spectra. Chemom. Intell. Lab. Syst. 2008; 90: 188–194.

15. Li H, Liang Y, Xu Q Cao D. Key wavelengths screening using compet-
itive adaptive reweighted sampling method for multivariate calibra-
tion. Anal. Chim. Acta 2009; 648: 77–84.

16. Zheng K, Li Q, Wang J, Geng J, Cao P, Sui T, Wang X Du Y. Stability
competitive adaptive reweighted sampling (SCARS) and its applica-
tions to multivariate calibration of NIR spectra. Chemom. Intell. Lab.
Syst. 2012; 112: 48–54.

17. Braga-Neto UM Dougherty ER. Is cross-validation valid for small-
sample microarray classification? Bioinformatics 2004; 20: 374–380.

18. Wu Z. The basic theories and methods research of NIR technology on
process analysis of Chinese Medicine [Doctor]: Beijing University of
Chinese Medline; 2012.

19. Haaland DM Easterling RG. Application of new least-squares
methods for the quantitative infrared analysis of multicomponent
samples. Appl. Spectrosc. 1982; 36: 665–673.

20. Sáiz-Abajo MJ, Mevik BH, Segtnan VH Næs T. Ensemble methods and
data augmentation by noise addition applied to the analysis of spec-
troscopic data. Anal. Chim. Acta 2005; 533: 147–159.

21. Kennard RW Stone LA. Computer aided design of experiments.
Technometrics 1969; 11: 137–148.

Evaluating the reliability of spectral variables

J. Chemometrics 2015, 29: 87–95 Copyright © 2014 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

95


