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Abstract. Inducible Nitric Oxide Synthase (iNOS) has been involved in a variety of diseases, and thus it is interesting to 
discover new iNOS inhibitors. This study was performed to identify natural iNOS inhibitors from traditional Chinese herbs 
through a combination of pharmacophore modeling, molecular docking and virtual screening. First, the pharmacophore mod-
els were generated though six known iNOS inhibitors and validated by a test database. The pharmacophore model_017 
showed good performance in external validation and was employed to screen Traditional Chinese Medicine Database (Ver-
sion 2009), which resulting in a hit list of 498 compounds with matching score (QFIT) above 40. Then, the hits were subject-
ed to molecular docking for further refinement. An empirical scoring function was used to evaluate the affinity of the com-
pounds and the target protein. Parts of compounds with high docking scores have been reported to have the related pharmaco-
logical activity from the literatures. The results provide a set of useful guidelines for the rational discovery of natural iNOS 
inhibitors from Chinese herbs. 
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1. Introduction 

The key physiologic mediator, nitric oxide (NO), which plays an important role in the regulation of 
various biological processes, is produced in mammalian cells by three distinct nitric oxide synthases 
(NOSs): neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) [1-2]. The three 
isoforms share signi�cant sequence homology (~50%) and catalyze the oxidation of L-arginine to NO 
[3]. The low levels of NO production are found to protect the body organ, such as the liver from is-
chemic damage [4]. The action of NO is based on its concentration in the body, e.g., the low concen-
tration produces the key signaling molecule for vasodilatation and neurotransmission while the high 
concentration leads to the defensive cytotoxin [5]. Inducible NOS was first described in macrophages 
as a mechanism of macrophage cytotoxicity, and previous studies reveal that it is expressed and acti-
vated during inflammatory events [6-8]. Generally, this isoform is not expressed in healthy quiescent 
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cells and NO is sustained at a low level. However, when iNOS is stimulated by various inflammatory 
stimuli, a high level of NO is produced and it induces tissue injury at the inflammatory site [9]. Con-
siderable evidence has shown that overproduction of NO induced by iNOS has been implicated in var-
ious pathological diseases including septic shock, tissue damage, and rheumatoid arthritis (RA) [10]. 
Therefore, iNOS has become a potential target for drug development in the treatment of inflammatory 
diseases. 

The work from this paper is to discover the potential natural ingredients which can inhibit the activity 
of iNOS. A combinational approach based on pharmacophore and molecular docking was employed to 
screen the chemical database of Traditional Chinese medicine for potential biological active ingredients.  

2. Materials and methods 

2.1. Data Sets and Tools 

The studies were implemented on a series of iNOS inhibitors reported by literature [11-15]. The 
structures of iNOS inhibitors are listed in Figure 1. The chemical structures were drawn in ISIS-Draw 
software and converted to 3D structures by SYBYL X-1.2 software. Considering the distribution of 
structural diversity, six compounds were selected to generate the pharmacophore model and the other 
compounds were used as test set to validate the model. 
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Fig. 1. Chemical structure of iNOS inhibitors 

The calculation was conducted on a Dell Red Hat Linux workstation through the programs SYBYL 
X-1.2 package (Tripos Inc., USA) with default values except those especially referred to. The GALA-
HAD module was used to generate the pharmacophore model of iNOS inhibitors, the 3D UNITY 
module was used to perform a flex search for the potential antagonists based on the pharmacophore 
model and the Sur�ex-Dock (SFXC) module was used to perform molecular docking. 

2.2. Pharmacophore studies 

A series of compounds reported in the literature can be divided into three subtypes according to 
their scaffold, but alignment of all subtypes is difficult. Under such conditions, ChEMBL1615292, 
ChEMBL1615290, ChEMBL1615288, ChEMBL1766633, ChEMBL1615291 and ChEMBL1615289, 
with the same scaffold, were chosen as the data source to generate the pharmacophore model. GALA-
HAD is a proprietary pharmacophore module from Tripos Ldt, which generates pharmacophore mod-
els and alignments from sets of compounds (Tripos International, St. Louis). The structures of all 
compounds were checked for bond orders, hydrogen atoms were added and a minimization procedure 
was implemented using the MMFF94 force-field. GALAHAD was run for 80 generations with a popu-
lation size of 60. The generated models were evaluated by a test database which was composed 80 of 
experimentally known iNOS inhibitors and 320 non-active compounds picked out from MDL Drug 
Data Report (MDDR, Version 200712) database. 

2.3. Model evaluation and virtual screening 

The pharmacophore models were generated by GALAHAD and validated by the test database. Sev-
eral parameters, A%, Y%, N and CAI, introduced from our previous work [16], were employed for 
model evaluation. The model with the highest value of CAI was considered to be the best model and 
used to screen Traditional Chinese Medicine Database (TCMD, version 2009), which contains 23033 
natural compounds from 6735 medicinal plants. 

2.4. Molecular Docking 

The X-ray crystal structure of iNOS (PDB code: 2ORO) was selected as the docking template [17]. 
The ligand N-[2-(1,3-BENZODIOXOL-5-YL)ETHYL]-1-[2-(1H-IMIDAZOL-1-YL)-6-
METHYLPYRIMIDIN-4-YL]-D- PROLINAMIDE (Ligand 228) was extracted and treated flexibly 
while the protein was held rigidly in the docking procedure. The crystallographic water molecules in 
the structure were removed and hydrogen atoms of modeled structure were added to de�ne the correct 
con�guration and tautomeric states. With the standard parameters, the modeled structure was of mini-
mized energy- using AMBER7 F99 force �eld. After extracting the binding ligand, the structure of 
iNOS was used for re-docking with Ligand 228, and the RMSD was calculated to check the accuracy 

X. Wang et al. / A combination of pharmacophore modeling, molecular docking and virtual screening 1317



of the Sur�ex-Dock program. The compounds hit by the pharmacophore generated were automatically 
docked into the binding site of iNOS successively. A protomol-based method and an empirically de-
rived scoring function were used to calculate the interaction of the ligands and iNOS. 

3. Results and discussion 

3.1. Pharmacophore modeling 

Twenty GALAHAD models were derived from the training sets. Model 7, 11~15 and 18 had high 
energy (SE > 1.0×106), which is considered to be due to steric clashes. Those models were excluded 
from the analysis. The other 13 models were evaluated successively by the test database constructed 
previously. Table 1 shows the validation results. Ht is the total number of hits while Ha is the number 
of active hits. A% represents the ability to identify active compounds from the test database. Y repre-
sents the proportion of active compounds in total hits. N represents the ability to identify active com-
pounds from non-active compounds. CAI was proposed to evaluate of the models comprehensively 
[16]. D is the total number of compounds in the test database and A is the number of active com-
pounds. The parameters were calculated as follows:  
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Table 1 

The validation results for each pharmacophore model 

Model Ht Ha A% Y N CAI 
1 59 37 46.25 0.63 3.14 1.45 
2 75 33 41.25 0.44 2.20 0.91 
3 78 17 21.25 0.22 1.09 0.23 
4 97 15 18.75 0.15 0.77 0.14 
5 65 28 35.00 0.43 2.15 0.75 
6 39 11 13.75 0.28 1.41 0.19 
8 12 6 7.50 0.50 2.50 0.19 
9 105 45 56.25 0.43 2.14 1.21 
10 124 55 68.75 0.44 2.22 1.52 
16 78 48 60.00 0.62 3.08 1.85 
17 54 42 52.50 0.78 3.89 2.04 
19 51 31 38.75 0.61 3.04 1.18 
20 33 19 23.75 0.58 2.88 0.68 

Model_017, with the highest value of CAI, was considered to be the best model. The pharmaco-
phore features were displayed in Figure 2, where cyan, green and magenta spheres indicate hydro-
phobes, HB acceptors and HB donors, respectively. Model_017 includes six pharmacophore features: 
three hydrophobes, two HB donors and one HB acceptor. 

 

Fig. 2. Pharmacophore Model_017 and molecular alignment of the compounds. 
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3.2. Virtual Screening 

The query of Model_017 was used to perform virtual screening experiment by using the Unity 3D 
database search protocol with all options set to default. A query fit (QFIT) value was computed for 
each hit to rank the matching rate of its required structural features on the pharmacophoric query. Vir-
tual screening based on pharmacophore was performed resulting in a hit list of 498 compounds, which 
were then subjected to molecular docking for further refinement. 

3.3. Molecular Docking 

The low root mean-square deviation (RMSD) of 2.31 Å between the docked and the crystal confor-
mation indicated the high reliability of Surflex-dock in reproducing the experimentally observed bind-
ing mode for iNOS inhibitor. All the 498 compounds were docked into the active pocket of iNOS, re-
sulting in a hit list of 207 compounds. The top 20 compounds with high docking scores were shown in 
Table 2. The docking schematic diagram of preferred ligands with target was shown in in Figure 3. 

Table 2 

 The docking results of the natural compounds with iNOS 

Compound 
 ID 

Score Name source plant 

1 7.43 2,3-Dihydro-7-methoxy-2S*,3R*-dimethyl-2-[4-methyl-5-(4-
methyl-2-furyl)-3(E)-pentenyl]-furo[3,2-c]coumarin 

Ferula ferulioides 

2 7.24 Saucernetin 7 Saururus chinensis 
3 7.16 Annocatacin B Annona muricata 
4 6.99 �-D-(6-O-4-Methyl-3,5-dimethoxycinnamoyl)-

glucopyranosyl-(1�2)-�-D-(3-O-sinapoyl)-fructofuranose 
Polygala tenuifolia 

5 6.57 Saucernetin 8 Saururus chinensis 
6 6.29 3,6-Di-O-caffeoyl-(�/�)-glucose Rubus sanctus 
7 6.17 Portulenol Portulaca grandiflora 
8 6.01 Fukanefuromarin E Ferula fukanensis. 
9 5.65 Rhododendrin Rhododendron chrysanthum 
10 5.62 Fukanemarin B Ferula fukanensis 
11 5.49 Panduratin A Kaempferia pandurata 
12 5.48 Silybin Silybum marianum 
13 5.29 Myrsinionoside D Myrsine seguinii 
14 5.27 3�-cis-p-Coumaroyloxy-2�, 

23-dihydroxyolean-12-en-28-oic acid 
Eugenia sandwicensis 

15 4.88 Tanshinone IIA Salvia miltiorrhiza 
16 4.74 Asiaticoside Centella asiatica 
17 4.59 Tryptanthrine Isatis indigotica 
18 4.43 Bazzanin Q Lepidozia incurvata 
19 4.05 2�,3�,13(S),16�-Tetrahydroxystemodane Rhizopus oryzae 
20 4.04 Bazzanin R Lepidozia incurvata 
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(a)  

(b)  

Fig. 3. The interactions between (a) compound 1 or (b) compound 2 and iNOS 
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3.4. Pharmacological evidence 

Several related literature has reported that natural compounds with specific structure have the activi-
ties in decreasing the activity or production of NO. Jang [18] found that Tanshinone IIA isolated from 
Salvia miltiorrhiza could markedly inhibit the production of NO through suppressing the expression of 
iNOS in a dose-dependent manner. Choi [19] reported that four tanshinones isolated from Salvia 
miltiorrhiza demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 
264.7 cells. Guo [20] investigated that Centella asiatica water extract and asiaticoside can inhibit the 
activity of iNOS, which could interpret the anti-inflammatory property of Centella asiatica. Silibinin 
(silybin), a flavonoid derived from the herb milk thistle, has potent anti-inflammatory and antioxidant 
activities. Lu [21] examined the effect of silibinin on the fear-conditioning memory deficits, inflam-
matory response, and oxidative stress induced by the intracerebroventricular injection of A� pep-
tide25~35 (A�25~35) in mice. He found that silibinin can inhibit the overexpression of iNOS and 
TNF-� mRNA in the hippocampus and amygdala. To a certain extent, the modeling approach in this 
study may shed light on the mechanism of the molecular recognition of iNOS inhibitors from natural 
compound database. 

4. Conclusion 

In summary, a combined computational approach was applied to give insight into the pharmacody-
namic characteristics of iNOS inhibitors and screen the potential bioactive components from natural 
herbals. Meanwhile, the hits through pharmacophore-based virtual screening were further refined by 
molecular docking procedure. Some of the hit compounds with high score were reported to have the 
activities of inhibiting iNOS or down-regulation of the expression of iNOS gene. The positive results 
indicated that the modeling strategies in the present study are most likely to be an encouraging way 
forward for the rational discovery of natural iNOS inhibitors. Combining with the biological experi-
ments, this approach is recommended to be applied in the research of active ingredients and pharmaco-
logical mechanisms from traditional Chinese medicine.  
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