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  Abstract—The aim of this study was to investigate the feasibility 
of near infrared (NIR) spectroscopy and multivariate calibration 
(MVC) techniques in monitoring and understanding of the 
alcohol precipitation process of water extract of Lonicerae 
Japonicae within the framework of ICH’s Quality by Design 
(QbD) and FDA’s process analytical technology (PAT). The 
contents of Chlorogenic acid, Luteoloside and soluble solid were 
identified as three critical quality attributes (CQAs) to be 
monitored. After a comparison of different spectra preprocessing 
methods, the raw NIR spectra were applied to multivariate 
modeling. By the interval PLS (iPLS) method, three 
characteristic wavebands, 8802~7605 cm-1, 6001~6201 cm-1 and 
7605~7308 cm-1, were selected for Chlorogenic acid, Luteoloside 
and soluble solid, respectively. PLS quantitative models based on 
these wavebands showed much improved performance. 
Moreover, prediction uncertainty was denoted and visualized by 
both the PLS confidence interval and simple interval calculation 
(SIC) interval. And a new index—Extent of Uncertainty (Eu) is 
proposed to assess the magnitude of uncertainty for CQAs with 
different dimensions in the same scale. The overall results 
provided the useful understanding of and deep insight into the 
alcohol precipitation process of Chinese herbal medicine (CHM). 

Keywords- alcohol precipitation; near infrared; multivariate 
calibration; uncertainty; Quality by Design; process analytical 
technology; Chinese herbal medicine 

I.  INTRODUCTION 
In 2005, the International Conference on Harmonization of 

Technical Requirements for Registration of Pharmaceuticals 
for Human Use (ICH) defines Quality by Design (QbD) in the 
annex of ICH Q8 as “a systematic approach to pharmaceutical 
development that begins with predefined objectives and 
emphasizes product and process understanding based on sound 
science and quality risk management” [1]. The QbD principles 
increase process knowledge and product understanding, usually 
by the application of new technologies such as Process 
Analytical Technology (PAT) initiated by the U.S. Food and 
Drug Administration (FDA) in 2004 [2]. These guidance 
documents are not regulatory but to encourage the 
pharmaceutical innovations and quality assurance. 

The principles of QbD and PAT are originally employed 
only for chemical drugs. Nevertheless, the concept behind PAT 
and QbD is recently more and more introduced and applied to 
Chinese herbal medicine (CHM) preparations [3-4], because 
they are very appropriate for the CHM industry to facilitate the 
use of innovative technologies, reduce production cost, 
increase the efficiency of manufacturing process, improve the 
final products quality and assure the clinical safety. 

Alcohol precipitation is one of the most important 
purification techniques in preparation of Chinese herbal 
medicines, and is typically operated in a batch-wise manner. 
Through alcohol precipitation, the unwanted components such 
as inorganic acid salt, starch, proteins, polysaccharide, etc. 
which are poorly dissolved in ethanol are precipitated, while 
the effective chemicals with good solubility in both water and 
alcohol are preserved. The effect of alcohol precipitation is 
related to a number of critical process parameters (CPPs), like 
the temperature and density of water extract, speed of agitation 
and adding of ethanol, the final concentration of ethanol, etc. 
And the change of the starting materials and interaction of 
CPPs often result in the lot-to-lot variation. In order to enhance 
the batch reproducibility of alcohol precipitation, Huang [5] 
proposed the multivariate batch monitoring technique. 
However, until now, few studies have been focused on 
monitoring the multiple critical quality attributes (CQAs) 
during the process of alcohol precipitation.  

In this article, near infrared (NIR) spectroscopy is 
investigated as a PAT tool to monitor the alcohol precipitation 
process of water extract of Lonicerae Japonicae, which is the 
key production unit of Qingkailing Injection specified in 
Chinese Pharmacopeia (Ch.P. 2010 edition, Volume ). The 
contents of Chlorogenic acid, Luteoloside and soluble solid are 
identified as the three CQAs, since Chlorogenic acid and 
Luteoloside are proved to be pharmacologically active [6,7] 
and soluble solid is linked with the intermediate purity.  

The concept of “risk assessment” under the framework of 
QbD and PAT is realized in this study by the evaluation of NIR 
prediction uncertainty. Two types of prediction intervals, the 
confidence interval and simple interval calculation (SIC) 
interval whose assumptions are based on error normality and 
error finiteness [8], respectively, are compared and discussed. 
And a new index to indicate the level of prediction uncertainty 
for different CQAs in the same scale is proposed. 

II. THEORY 

A. Multivariate Calibration (MVC) 
In this paper, partial least squares (PLS) is applied to relate 

the reference analysis results of the three CQAs to the NIR 
spectra obtained from the alcohol precipitation process of 
Lonicerae Japonicae. The number of latent variables is 
optimized by leave-one-out (LOO) cross-validation method 
and the statistics of the root mean squared error of 
cross-validation (RMSECV) and predicted residual error sum 
square (PRESS) [9]. The quality of the PLS model built is 
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evaluated in terms of correlation coefficient (r), the root mean 
squared error of calibration (RMSEC), RMSECV, the root 
mean squared error of prediction (RMSEP) and residual 
predictive deviation (RPD) [10,11]. 

B. Uncertainty Evaluation 
1) PLS Confidence Interval (CI): PLS CI aims at indicating 

the PLS prediction uncertainty. However, until now, there are 
no generally accepted approaches to estimate the PLS CI. 
Bouckaert [12] compared different methods for estimating PLS 
CI, including the classic ordinary least squares (OLS) method, 
the U-deviation method and linearization method. Aji [13] 
proposed a bootstrap method to determine the PLS CI, and 
Boiret [14] adapted this method to the pharmaceutical 
environment. In this article, the most prevalent formulation 
(see Eq.1) to calculate the PLS CI in industrial applications 
[15] will be applied in the error estimation of the three CQAs. 

/2, 1 /2, 1[ , , ]n k n kY t s Y t sα α

∧ ∧

− − − −− +         (1) 

where Y
∧

 is PLS prediction value from the NIR spectrum, t 
is the Student’s t distribution, � is the significance level, n is 
the number of spectra used in the calibration set, k is the 
number of principal components selected for building the 
calibration model and s is denoted as follows: 

1/2
0(1 )s RMSEC H= +            (2) 

where RMSEC is a measurement of how well spectra data 
correlates to the values of CQAs in model development and  

  1
0 ( ' )H t T T t−=              (3) 

where H0 equals the PLS leverage and is proportional to the 
Hotelling T2 statistic. 

2) SIC interval: Different from the PLS CI method who 
assumes that the distribution of the estimated error is normal, 
the simple interval calculation (SIC) method is based on a 
single postulate that all errors involved in calibration problem 
are finite [16].  

Consider the PLS model in our case as 

Y Xa ε= +                 (4) 

where X represents the matrix of NIR spectra, a is the 
vector of regression coefficient and ε  is the vector of error. 

Error finiteness means that there is a maximum error 
deviation (MED, represented by �) of ε . MED is usually 
unknown. In this work, only the upper limit of � (�SIC) that 
approximates four times of RMSEC [17] is utilized. Then, for a 
given calibration set (X, Y), the following inequation is 
established: 

T
i i iY X b Y− +< <                (5) 

where Yi
- = Yi –�, Yi

+ = Yi + �, i = 1, 2, ···, n 

In Eq.5, b is the region of possible values (RPV) that stands 
for the parameter’s space, and n is the number of samples in X. 

When a new sample’s spectrum (x) is obtained, the predicted 
value y = xtb belongs to the interval: 

V = [v-, v+], where v- = min(xtb), v+ = max(xtb)    (6) 

V in Eq.6 is the SIC prediction interval. v- and v+ are 
calculated by linear programming algorithm.  

III. MATERIALS AND METHODS 

A. Materials 
Chlorogenic acid and Luteoloside were obtained from 

National Institute for the Control of Pharmaceutical and 
Biological Products (NICPBP, Beijing, P. R. China). Flos 
Lonicerae Japonicae was purchased from Beijing Ben Cao 
Fang Yuan Medicine Co. LTD. (Beijing, P. R. China). 
Methanol (Fisher Scientific, USA), acetonitrile (Fisher 
Scientific, USA), formic acid (Sigma-Aldrich Co. LLC, USA), 
glacial acetic acid (Beijing Chemical Works, P. R. China), and 
distilled water (A.S. Watson Group Ltd, Hong Kong of China) 
were of HPLC grade and all other reagents were of analytical 
grade. 

B. Description of Alcohol Precipitation Process 
Before alcohol precipitation, the water extract of Flos 

Lonicerae Japonicae with required densities was prepared 
according to the procedure of Qingkailing Injection specified in 
Ch.P. (2010 edition, Volume I). The alcohol precipitation 
process was carried out in a cylindrical glass reactor with a 
volume of about 3L. Reactor agitation was provided by RW20 
digital overhead stirrer (IKA Works, Germany). The stirring 
speed was maintained at 500 rpm. 95% alcohol was pumped 
into the reactor form the alcohol storage tank with a constant 
flow rate of 75 mL·min-1. At the beginning of each batch of the 
alcohol precipitation process, the agitator and the pump were 
turned on simultaneously soon after 0.4 L concentrated water 
extract was added into the reactor. The alcohol precipitation 
process was lasted for 30 min. During the process, when the 
predefined amount of ethanol was added, the pump was turned 
off to stop the adding of alcohol. 

C. Experimental Setup 
To determine the three CQAs, 12 batches of alcohol 

precipitation were performed as arranged in Table I. The 12 
batches were divided into three groups in connection with three 
CQAs. For example, Group 2 of Batches 5 to 8 was used to 
build the NIR quantitative model to determine the content of 
Luteoloside. In each group, the calibration set was constructed 
with one normal batch and two fault batches, and the left one 
normal batch was treated as the validation set. The fault 
batches, by changing the densities of the starting material and 
volume of the 95% alcohol added, were used to expand the 
variation coverage of the calibration set. 

During each precipitation process, 1.5 mL suspension liquid 
was drawn by a pipette gun at the fixed position in the reactor 
every 0.5 min, and 61 samples including the one sampled at 0 
min were hence prepared. All samples were treated by 
centrifugation at 5976 × g for 10 min before a further analysis. 

 

1567



TABLE I.  EXPERIMENTAL RUNS 

No. of 
Group CQA No. of 

Batch 

Normal 
/ Fault 
batches 

Calibration 
/ Validation 

set 

Densities 
of water 
extract 

alcohol 
added 

(L) 

1 CA 

1 N Val. 1.10 1.50 
2 N Cal. 1.10 1.50 
3 F Cal. 1.05 1.71 
4 F Cal. 1.15 1.71 

2 LU 

5 N Val. 1.10 1.50 
6 N Cal. 1.10 1.50 
7 F Cal. 1.15 1.50 
8 F Cal. 1.05 1.50 

3 SS 

9 N Val. 1.10 1.50 
10 N Cal. 1.10 1.50 
11 F Cal. 1.15 1.33 
12 F Cal. 1.05 1.33 

 

D. NIR Spectroscopy 
The sample after centrifugation was filled into a quartz 

cuvette (8 mm in diameter) covered with a plastic cap. Then, 
an Antaris Nicolet FT-NIR system (Thermo Fisher Scientific 
Inc., USA) was utilized to collect the spectra in transmittance 
mode. Each spectrum was the result of averaging 16 scans of  
4 cm-1 resolution in the 10000 to 4000 cm-1 region. For every 
sample, triplicate spectra were obtained and the 3 spectra were 
averaged for use in the calibration model. All NIR data were 
collected and archived using the Thermo Scientific RESULT 
software. 

E. Reference Analysis 
1) HPLC Determination: HPLC separations were 

performed on Agilent 1100 HPLC system with integrated four 
gradient systems, vacuum degasser, autosampler, temperature 
controlled column compartment and diode array detector 
(DAD) detector (Agilent Technologies, USA).  

a) To assay the Clorogenic acid, an Agilent XDB C18 
column (250 × 4.6 mm, 5 μm) was utilized with a mixture of 
methanol and 0.1% formic acid water solution (20:80, v/v) as 
the mobile phase. The column temperature was controlled at 
30 . The spectrometer was set at 327 nm. The flow rate was 
maintained at 1 mL·min-1. The samples of Group 1 after NIR 
scanning were diluted by 50% methanol water solution 
appropriately. Then the diluent was filtered through a 0.45 μm 
Millipore filter membrane, and 10 μL aliquot of filtrate was 
injected into the HPLC system for analysis. 

b) For the determination of Luteoloside, the separation 
was performed on Agilent ZOBAX SB-Phenyl column 
(250×4.6 mm, 5 �m) controlled at 30 . Acetonitrile (A) and 
0.5% glacial acetic acid solution (B) were the mobile phase. 
The gradient program was as follows: initial 10% (A); at 0–30 
min, linear change from 10% to 30% (A). The signal was 
recorded at 350 nm and the flow rate was 1 mL·min-1. The 
samples of Group 2 after NIR scanning were directly filtered 
by 0.45 μm membrane filter, and 5 μL of filtrate was injected 
into the HPLC system for analysis. 

2) Soluble Solid Content Measurement: After NIR analysis, 
0.5 mL of one sample in Group 3 was drawn into a penicillin 
bottle. The penicillin bottle with liquid was weighted and then 

was oven dried at 110  to the constant weight. Then, the 
soluble solid content (S %) could be calculated by the Eq.7: 

        % 100%bottle solid bottle

bottle liquid bottle

W WS
W W

+

+

−= ×
−

        (7) 

Where Wbottle means the weight of the penicillin bottle; 
Wbottle+liquid is the weight of penicillin bottle with 0.5mL liquid; 
Wbottle+solid is the constant weight of penicillin bottle with 
soluble solid. 

F. Software and Computing 
The software Matlab 7.0 (MathWorks Inc., USA) combined 

with PLS_Toolbox 2.1 (Eigenvector Research Inc., USA) was 
used in PLS regression. SIMCA P + 11.5 (Umetrics, Sweden) 
served as chemometric tool for data preprocessing, and 
iToolbox (The Royal Veterinary and Agricultural University, 
Denmark) for variable selection. SIC interval V and �sic were 
computed using the SIC Toolbox (Semenov Institute of 
Chemical Physics, Russia). 

IV. RESULTS AND DISSCUSSION 

A. Results of Reference Analysis 
Since the HPLC methods used here are recommended by 

the Ch.P. (2010 Edition, Volume I), the accuracy and 
reproducibility of the methods have already been approved 
officially. The linearity tests for the quantitation of Clorogenic 
acid and Luteoloside were carried out over the range 2.01 - 
80.4 μg·mL-1 and 2.014 - 80.56 μg·mL-1, respectively. The 
parameters of the calibration curves y = 16.446x - 2.6209 (r = 
0.9998) and y = 12.168x - 1.5585 (r = 0.9999) for Clorogenic 
acid and Luteoloside, respectively, demonstrate the good linear 
relationship between peak area (y) and concentration (x) of 
equivalent components. A summary of HPLC analysis and 
soluble solid content measurement can be found in Table II. 
All the reference values in the validation sets are within the 
ranges of the calibration sets, indicating that the established 
calibration sets cover a suitable wide range of variability. 

B. Preprocessing of NIR Spectra 
The profile of the original process NIR spectra are 

exemplified by three time points from Bacth 2 shown in Fig.1. 
Before the calibration model development, the most 
prevalently used preprocessing methods or the chained 
combination of them, such as Savitzky-Golay (S-G) 
smoothing, derivatives, multiplicative scatter correction 
(MSC), standard normal variate transformation (SNV), wavelet 
de-nosing of spectra (WDS), etc. were compared and 
investigated (results not listed). 

The preprocessing effects for the three CQAs were similar. 
The S-G smoothing, WDS and no pretreatment to the original 
spectra outperform other methods in both the model calibration 
and prediction denoted by the relatively low RMSEC, 
RMSECV, RMSEP and high RPD. Since the three methods 
have almost the same preprocessing abilities, considering for 
the actual application, the original spectra without any 
pretreatment are employed in quantitative model development 
to save the computing time.  
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TABLE II.  A SUMMARY OF REFERENCE ANALYSIS 

CQA 
Calibration set Validation set 
Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

CA (mg·mL-1) 0.9319 9.8842 1.4103 7.0962 
LU(μg·mL-1) 22.56 154.55 28.87 133.88 
SS (g·mL-1) 0.0284 0.2318 0.0299 0.2226 
 

 
Figure 1. Raw NIR spectra selected at three time points of Batch 2. (Time point 
1 corresponds to 0 min; Time point 31 corresponds to 15 min. Time point 61 
corresponds to 30 min.) 

C. Waveband Selection 
After the comprehensive study of preprocessing methods, 

however, little improving of the calibration model was 
observed. This phenomenon may be related to the noisy or 
redundant information carried by the full length NIR spectra. 
Therefore, the interval PLS (iPLS) was applied to select the 
useful waveband and could also be helpful in interpretation of 
the NIR data. 

In the iPLS method, the spectra were first split into a 
number of non-overlapping intervals. Then, each interval 
underwent a separate PLS modeling and the RMSECV was 
minimized to detect the optimal intervals. In this paper, for the 
three CQAs, the numbers of intervals were all optimized in the 
range between 2 and 100 at an increment of 2. The optimal 
numbers of interval were 5, 30 and 20 for Chlorogenic acid, 
Luteoloside and soluble solid, respectively. The corresponding 
results of iPLS regression are presented in Fig.2 The three 
wavebands selected by iPLS method are 8802~7605 cm-1, 
6001~6201 cm-1 and 7605~7308 cm-1 for Chlorogenic acid, 
Luteoloside and soluble solid, respectively.  

D. Model Calibration and Validation 
With the potential wavebands we explored, PLS models 

were built to determine the three CQAs. In each group, there 
were 183 samples in the calibration set and 61samples in the 
validation set. For each individual PLS model, the number of 
PLS latent factor was optimized and chosen mainly according 
to the RMSECV and PRESS statistics. Taking soluble solid 
content for instance, 7 factors were adequate to perform both 
the model calibration and validation based on the waveband of 
7605~7308 cm-1 (see Fig.3).  

Table III shows the summary of modeling statistics. From 
the calibration point of view, the low RMSEC and RMSECV 
demonstrated the success of the waveband selection. From the 
validation point of view, the models built on the iPLS selected 
wavebands also exert good prediction capability. 

 

 
Figure 2. iPLS regression. Bars represent the optimized RMSECV for each 
interval. Green bar is the optimal waveband selected. Blue line is the mean 
spectrum scaled by the Y axis. The red dotted line is RMSECV for the global 
model using 4, 4 and 7 latent factors for Chlorogenic acid (A), Luteoloside (B) 
and soluble solid (C), respectively. 
 

 
Figure 3. The optimal latent factor selected for soluble solid content based on 
the waveband of 7605~7308 cm-1. 
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TABLE III.  MODELING STATISTICS FOR DETERMINATION OF CHLOROGENIC ACID (CA), LUTEOLOSIDE (LU) AND SOLUBLE SOLID (SS) 

CQA Waveband LVs Calibration set Validation set 
rcal RMSEC RMSECV rval RMSEP RPD 

CA 8802~7605 cm-1 7 0.9928 0.181 0.204 0.9943 0.290 4.97 
LU 6001~6201 cm-1 6 0.9968 2.35 2.68 0.9975 3.64 7.69 
SS 7605~7308 cm-1 7 0.9979 2.80E-03 3.16 E-03 0.9990 2.16E-03 20.46 

 

 
 Figure 4. The correlation diagrams and residual plots. 

 
Finally, the correlation plots of actual values determined by 

reference methods and values predicted by NIR spectra are 
plotted (see the correlation diagrams in Fig.4A, B and C). The 
prediction residuals for both the calibration sets and validation 
sets of the three CQAs are shown in Fig.4D, E and F. The 
linearity of the regression lines is favorable. The mean percent 
errors (ratios of residuals to actual values) are about 13.33%, 
2.96% and 3.58% for Chlorogenic acid, Luteoloside and 
soluble solid, respectively, demonstrating that the models 
developed are satisfying. 

E. Uncertainty Analysis 
Prediction Interval: There is a practical need to assess the 

uncertainty of the PLS predicted results, because such 
prediction could be related with the quality, efficacy and even 
patient safety of the final products. As illustrated in Section 
II.B in this article, two kinds of uncertainty indexes, the PLS 
confidence interval (CI, �=0.95) and SIC interval (SI), are 
calculated and plotted for the three validation sets (Batch 1, 5 
and 9 in Table 1) of the three CQAs.  

Seen from Fig.5, CI and SI are quite different for the 
uncertainty analysis. The PLS CI seems unchanged during the 
precipitation process, whereas the SI varies for each individual 
sample. Generally, the mean width of SI in one batch 
approximates twice that of CI (see Table IV), which can be 
mainly attributed to the values of student t (1.9735 in our case,  

 

with �=0.95) in Eq.1 and �SIC (about four times of RMSEC) in 
Eq.5. For the particular time points in the alcohol precipitation 
process, such as the time point when the adding of alcohol is 
stopped, the final time point, etc. prediction with individual 
uncertainty interval is sometimes more helpful in practice. 
Therefore, a combination use of SI and traditional CI could 
help the operator make the right judgment. 

1) Extent of Uncertainty: In order to evaluate the 
magnitude of prediction uncertainty, a new index—Extent of 
uncertainty (Eu) is proposed: 

int ,

,

erval i
u

predict i

W
E

Y
=   i = 1,2, ···, n        (8) 

where Winterval is the width of prediction interval (CI for 
calculating Eu-CI; SI for Eu-SI); Ypredict is value of CQA 
predicted by NIR spectra; i is the number of time point. By Eu, 
the uncertainty will be assessed in the same scale for different 
CQAs or different time points in the whole process. 

Values of Eu for the three CQAs in the validation sets are 
calculated and plotted in Fig.5. As the width of CI is almost the 
same in the process, the trend of Eu-CI is opposite to change of 
content of the CQA. Nevertheless, there is no regular form for 
Eu-SI. Taking Chlorogenic acid for example, it can be deduced 
that the prediction with large values of Eu-SI is weaker from 
time point 25 to 50 than other time points.  

To compare the extent of prediction uncertainty of the three 
CQAs, the mean of Eu is computed shown in Table IV. The 
smallest uncertainty is observed for the prediction of 
Luteoloside. What’s more, there is a good correlation between 
the mean of Eu and the mean of percent errors, approving that 
the new index Eu is very useful in evaluating the prediction 
uncertainty. 

V. CONCLUSIONS 
In this paper, Three PLS models were successfully 

constructed to determine the three CQAs during the process of 
alcohol precipitation of Lonicerae Japonicae. The original 
spectra without any pretreatment were capable to perform the 
multivariate modeling. By using iPLS method, three distinct 
wavebands of 8802~7605 cm-1, 6001~6201 cm-1 and 
7605~7308 cm-1 were selected for Chlorogenic acid, 
Luteoloside and soluble solid, respectively, and significantly 
improved the performance of PLS models compared to that 
without variable selection. Moreover, the PLS prediction 
uncertainty was denoted by the SIC interval as well as 
conventional confidence interval. And SIC interval was more 
sensitive to estimate the individual prediction error. The 
proposed new index, Extent of Uncertainty (Eu) provided a 
useful insight into the uncertainty level of CQAs with different 
dimensions.  
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TABLE IV.  A SUMMARY OF REFERENCE ANALYSIS 

CQA 
Mean width of 

prediction interval Mean of Eu 

CI SI CI SI 
Chlorogenic acid (mg·mL-1) 0.78 1.68 0.38 0.79 

Luteoloside (μg·mL-1) 9.43 21.56 0.22 0.43 
Soluble solid (g·mL-1) 1.15 E-02 2.56 E-02 0.25 0.54 

CI represents the confidence interval; SI represents the SIC interval. 
 

 
Figure 5. Visualization of the prediction intervals and extent of uncertainty at 
different time points of the ethanol precipitation process. SI represents the SIC 
interval; CI represents the confidence interval. Chlorogenic acid (A), 
Luteolosideand (B) and soluble solid (C). 
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Luteoloside
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Soluble solid

Time points
1 11 21 31 41 51 61

Y
 v

al
ue

s 
(g

/m
L)

SIC interval
Confidence interval
Predicted values

0.25

0.20

0.15

0.10

0.05

0

C

Number of samples
10 20 30 40 50 60

E
xt

en
t o

f u
nc

er
ta

in
ty

EU - SI
EU - CI

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

1571


