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a  b  s  t  r  a  c  t

Ethanol  precipitation  plays  a major  role  in the  pretreatment  of  Flos  Lonicerae  Japonicae  of  Qingkailing
injection,  and  is  also  one  of  the  most  popular  purification  techniques  in Chinese  herbal  medicines.  In
order  to  monitor  and  have  a better  understanding  of  the  ethanol  precipitation  process,  a  PLS model was
built based  on  NIR spectroscopy  and  HPLC  analysis  of  chlorogenic  acid  content  within  the  framework  of
FDA’s PAT  initiative.  Nevertheless,  due  to  the  complex  mechanism  of  and  the  raw  materials’  natural  vari-
ability  introduced  into  the  ethanol  precipitation  process,  it was  unable  to foresee  the variations  in  new
batches  which  may  jeopardize  the  robustness  of  the  established  model.  Therefore,  based  on  the  simple
interval  calculation  (SIC)  theory,  a new  model  expansion  updating  strategy  which  could  continuously
expand  the  variation  coverage  of  the  calibration  model  along  with  the  batch  proceeding  of ethanol  pre-
cipitation  process  was  proposed.  Effects  of  model  updating  were  validated  by  an individual  batch  with
60 samples.  After  two  times  of  updating,  the  root  mean  squared  error  of  prediction  (RMSEP)  decreased
from  0.268  mg  mL−1 to 0.199  mg mL−1, while  the  insiders  in  the  object  status  plot  (OSP)  increased  from
44  to  58,  demonstrating  the  good  performance  of  the  proposed  approach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ethanol precipitation is one of the most popular purification
techniques used in the preparation process of traditional Chinese
medicine (TCM). In Chinese Pharmacopeia (Ch.P. 2010 Edition,
Volume I), about 140 manufacturing processes of Chinese patent
medicine and simple preparations employ ethanol precipitation.
Flos Lonicerae Japonicae is one of the ingredients in Qingkailing
injection specified in Ch.P. and is widely used in the clinic. In the
manufacturing process of Qingkailing injection, ethanol precipi-
tation plays a major role in the pretreatment of Flos Lonicerae
Japonicae, and is thus taken as our research object.

The principles of ethanol precipitation are easy to understand.
During the addition of ethanol into the water extract of crude drugs,
unwanted components like starch, inorganic acid salt, polysac-
charide and proteins which are poorly dissolved in ethanol are
precipitated, while the effective chemicals with good solubility in
both water and ethanol are preserved. Nevertheless, the deposit-
ing particles could absorb the effective compositions due to the
mechanism of electric effect and (or) hydrogen bonding interaction
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[1],  leading to the loss of effective components which may affect
the efficacy and safety of the yielded product. Besides, many pro-
cess parameters could influence the ethanol precipitation, such
as the temperature and density of water extract, speed of agita-
tion and addition of ethanol, the final content of ethanol. Although
these parameters can be operated well, the size and status of
depositing particles could not be controlled so far, indicating
that there exist some uncertainties in the ethanol precipita-
tion process. What is more, the quality of raw materials could
vary due to the different geographic origin and growing con-
ditions [2].  Such natural variability may  be introduced into the
ethanol precipitation process, causing fluctuations between differ-
ent batches.

Therefore, in order to guarantee the stable therapeutic effect
and safety of the TCM preparations, NIR spectroscopy (NIRS) in line
with the United States Food and Drug Administration (FDA)’s Pro-
cess Analytical Technology (PAT) initiative and guidance [3],  was
applied in process monitoring of ethanol precipitation. NIRS is a
fast and non-destructive technique that requires minimal analyst
intervention [4],  and recently has been more and more reported
to be successfully applied in TCM research [5,6]. One objective of
this study is to investigate the possibility of NIRS to quantify the
content of chlorogenic acid, one of the most important effective
components in both Flos Lonicerae Japonicae and Qingkailing injec-
tion [7],  during the ethanol precipitation process of water extract
of Flos Lonicerae Japonicae.

0003-2670/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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Firstly, multivariate calibration (MVC) tools (e.g. PLS) are used to
build the quantitative model relating NIR spectra to the concentra-
tion of chlorogenic acid. Samples included in the initial calibration
model should ideally encompass every source of variability that
potentially influences measurement in the process [8],  whereas it is
difficult to foresee the new sources of variation in actual progress of
ethanol precipitation due to the above-mentioned complex nature
of the process. Such variation may  jeopardize the model robustness
over time. Hence, on second thoughts, a dynamic model updat-
ing strategy that continuously expands the variation coverage of
the quantitative model along with the batch proceeding of ethanol
precipitation process is proposed.

As reported, there are several calibration model maintenance
strategies focusing on data correction and adjustment such as Slope
and Bias Standardization (SBC) [9],  Piecewise Direct Standardiza-
tion (PDS) [10], Finite Impulse Response (FIR) [11], Spectral Space
Transformation (SST) [12], Systematic Prediction Error Correction
(SPEC) [13], model expansion, model modification (e.g. Dynamic
Orthogonal Projection [14]) and new MVC  algorithms (e.g. Delau-
nay Triangulation [15]). This work chiefly considers the model
expansion technique. The simplest way of model expansion is
adding new samples to the old calibration set to reconstruct a
new model [16]. However, new samples incorporated into the old
model should be identified with new sources of variation firstly. The
Kennard and Stone algorithm, Duplex algorithm, Mahalanobis Dis-
tance (MD) [17] and Principal Component Analysis (PCA) [18] were
reported to perform the choice of the new subsets. And this arti-
cle, for the first time, couples the simple interval calculation (SIC)
method [19] into the calibration model updating strategy. The SIC
leverage is used to evaluate the extent of variability of incoming
new samples. The criterion of SIC leverage for selecting updating
samples is built.

2. Experimental

2.1. Materials

Flos Lonicerae Japonicae was purchased from Beijing Ben Cao
Fang Yuan Medicine Co. Ltd. (Beijing, P.R. China). Chlorogenic acid
was obtained from National Institute for the Control of Pharmaceu-
tical and Biological Products (NICPBP, Beijing, P.R. China). Methanol
(Fisher Scientific, USA), formic acid (Sigma–Aldrich Co. LLC, USA)
and distilled water (A.S. Watson Group Ltd., Hong Kong of China)
were of HPLC grade and all other reagents were of analytical grade.

2.2. Instrumentation

2.2.1. NIR spectroscopy
The NIR spectra were collected in transmission mode with an

Antaris Nicolet FT-NIR system (Thermo Fisher Scientific Inc., USA).
Each sample spectrum was the result of 16 scans in the range
between 10,000 and 4000 cm−1 at ambient temperature using
4 cm−1 resolution, and was recorded as absorbance with air as
reference. Every sample was scanned three times, and the final
spectrum used for each sample was an average of the three. All NIR
spectra were collected and archived using the Thermo Scientific
Result software.

2.2.2. HPLC analysis
The concentration of chlorogenic acid was quantitated by RP-

HPLC method recommended by the Ch.P. (2010 Edition, Volume
I). An Agilent 1100 HPLC system (Agilent Technologies, USA) with
a vacuum degasser, a quaternary pump, an autosampler, a ther-
mostatic column compartment, a diode array detector (DAD) were
used. Separation was performed on Agilent XDB C18 column
(250 mm × 4.6 mm with 5 �m particle size) at 30 ◦C. The mobile

phase were methanol and 0.1% formic acid water solution (20:80,
v/v), and the signal was monitored at 327 nm.  The flow rate was
maintained at 1 mL  min−1.

The samples after NIR scanning were diluted by 50%
methanol–water solution properly. Then the diluent was  filtered
through a Millipore membrane filter with an average pore diame-
ter of 0.45 �m,  and 10 �L filtrate was injected into the HPLC system
for analysis.

2.3. Procedures

2.3.1. Process description
The Flos Lonicerae Japonicae was first extracted by 15 fold

water for 0.5 h. The water extract was  filtered. The remaining Flos
Lonicerae Japonicae was extracted by 10 fold water for 0.5 h, and
then filtered. Filtrates after the two  extractions were combined
and concentrated to certain densities (e.g. 1.10 at 25 ◦C for normal
batches).

The ethanol precipitation process was carried out in a 3 L
glass reactor. Reactor stirring was  provided using an agitator
with oblique quadricuspid paddle at a constant speed of 500 rpm.
Ethanol was pumped into the reactor from the ethanol tank with
a constant flow rate of 75 mL  min−1. In each batch of the ethanol
precipitation process, the agitator and the pump were turned
on simultaneously immediately after 400 mL  concentrated water
extract was added into the reactor. The agitation process was lasted
for 30 min. During the process, when the predefined amount of
ethanol (e.g. 1500 mL  for normal batches) was  acquired, the pump
was  turned off to stop the addition of ethanol. The final concentra-
tion of ethanol in normal batch was  about 75%.

Along with the ethanol precipitation process, sample of 1.5 mL
was  drew by a pipette gun from the reactor at the fixed position
every 30 s. Consequently, a total of 60 samples in one batch were
prepared. All samples were centrifuged at 9000 rpm for 10 min.
Then, the sample was  filled into a particular quartz cuvette (8 mm
in diameter) covered with a plastic cap to perform the NIR spec-
troscopy.

2.3.2. NIR spectra pretreatment
A variety of spectroscopic data preprocessing methods are com-

pared to separate the useful information from noise, such as
Savitzky–Golay (S–G) smoothing, first order derivatives, Norris Gap
derivatives, multiplicative scatter correction (MSC), standard nor-
mal  variate transformation (SNV), wavelet de-nosing of spectra
(WDS). Then, moving window PLS (mwPLS) was applied in variable
selection. SIMCA P + 11.5 (Umetrics, Sweden) served as chemo-
metric tool for data preprocessing, and iToolbox [20] for variable
selection.

The following parameters were calculated to evaluate the
success of data pretreatment: correlation coefficient r for both
calibration and validation sets, the root mean squared error of cal-
ibration (RMSEC), the root mean squared error of cross-validation
(RMSECV), the root mean squared error of prediction (RMSEP) [21]
and residual predictive deviation (RPD) [22].

2.3.3. Model building
Six batches of ethanol precipitation process were performed.

The former three batches (Batches 1, 2 and 3) were applied to form
the initial calibration set. Batch 4 was  applied as the internal test
set. Batches 5 and 6 were used as the external test sets. In order
to construct a calibration set covering a wide range of variations,
water extracts for Batches 1 and 2 were concentrated to densities of
1.05 and 1.15 respectively. The amount of ethanol added to Batches
1 and 2 were both 1711 mL  to make final concentration of ethanol
in the two batches around 77%. Batches 3 to 6 were normal batches.
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Table 1
Comparison of different preprocessing methods for NIR spectra.

Processing LVs Calibration Validation

rcal RMSEC RMSECV BIAScal rval RMSEP RPD BIASval

Origin 4 0.8997 0.606 0.640 0.482 0.9968 0.228 5.80 0.168
S-G  7 0.9287 0.515 0.613 0.398 0.9871 0.297 4.46 0.251
1std  6 0.8808 0.658 0.730 0.517 0.9937 0.343 3.85 0.290
NG-2ndd 6 0.8718 0.684 0.889 0.499 0.9117 0.656 2.01 0.500
MSC 3  0.8859 0.644 0.672 0.507 0.9967 0.300 4.41 0.228
SNV  4 0.8884 0.637 0.672 0.509 0.9973 0.285 4.64 0.225
WDS  4 0.8997 0.606 0.640 0.482 0.9969 0.228 5.80 0.168
Baseline 4 0.8884 0.638 0.673 0.506 0.9963 0.295 4.48 0.245

Origin means using the original spectra; 1std is the first order derivative; NG-2ndd is Norris Gap smoothing plus the second derivatives.

PLS regression performed on Matlab version 7.0 (MathWorks
Inc., USA) with PLS Toolbox 2.1 (Eigenvector Research Inc., USA)
was used to set up quantitative models. The number of latent
variables was optimized by leave-one-out (LOO) cross-validation
method and predicted residual error sum square (PRESS). The per-
formance of the built PLS model was evaluated in terms of r, RMSEC,
RMSECV, RMSEP, BIAS and RPD.

2.3.4. SIC approach
Unlike the traditional MVC  methods (e.g. PLS and PCR) whose

assumption was based on error normality, the simple interval cal-
culation (SIC) method was based on a single postulate that all errors
involved in calibration problem were finite. The whole theory of SIC
approach could be found in Ref. [23] and some applications in Refs.
[24,25].

Consider the PLS regression as:

y = Xb+ε (1)

where y was the concentration of chlorogenic acid; X was  a matrix
of spectra with the dimensionality n × p; n denote the number of
samples while p the number of wavelength variables; b was the
regression coefficients and � was the prediction error.

According to the SIC theory, there was a maximum error devia-
tion (MED, represented by ˇ) of �. Thus, for a given calibration set
(X, y), the following equation could be established:

B = {b ∈ Rp, y− < Xb < y+},
where y−

i
= yi − ˇ, y+

i
= yi + ˇ, i = 1, . . . , n (2)

B in the above inequation was called the region of possible values
(RPV) that stood for the parameter’s space. When the spectrum
(x) of a new sample was acquired, the predicted concentration of
chlorogenic acid y = xtb would fall into the interval:

v = [v−, v+], where v− = min(xtb), v+ = max(xtb) (3)

The key to estimate the interval v was the calculation of  ̌ [23].
In this work, only the upper limit of  ̌ (ˇmax) was  utilized. ˇmax

approximates 4 times of RMSEC, giving an assurance that any sam-
ples will never cross outside this border [19]. The interval v and
ˇmax were estimated using the SIC Toolbox [26].

The quality of SIC prediction was evaluated by two statistics. The
SIC residual (r) was defined as the difference between the center of
the interval v and the reference value y (scaled by ˇmax).

r(x, y) = 1
ˇ

(
y − v+(x) + v−(x)

2

)
(4)

The SIC leverage (h) was the half width of interval v divided by ˇmax.

h(x, y) = 1
ˇ

(
v+(x) − v−(x)

2

)
(5)

Based on the two statistics, an object status classification (OSC)
[27] strategy was brought forward for both calibration set and

test set. According to OSC, samples with different properties
could be classified into insiders (|r| + |h| < 1), boundary objects
(|r| + |h| = 1), outsiders (|r| + |h| > 1), absolute outsiders (|h| > 1) and
outliers (|r| − |h| > 1).

As seen in Eq. (5),  the SIC leverage characterized the  ̌ nor-
malized precision of prediction, samples with larger SIC leverage
meant that the prediction was poor and indicated the existence of
variations. So, the calibration model, in this work, was  updated by
expanding with new samples selected according to the SIC leverage.
The efficiency of updating was compared with an updating strategy
using Kennard and Stone algorithm.

3. Results and discussion

3.1. HPLC determination of chlorogenic acid

For quantitative consideration, a calibration curve based on
the concentration range from 2.01 to 80.40 �g mL−1 of chloro-
genic acid was established upon eight consecutive injections
of different concentrations. Regression equation calibrated was
y = 16.4410x − 2.3636 (r = 0.9998, n = 8) with y being the peak area
in mAU  s and x being the concentration. Quantification results
showed that the range of chlorogenic acid concentrations of
calibration set varied from 0.9319 mg  mL−1 to 7.7465 mg  mL−1.
For test sets 4, 5 and 6, the ranges were 1.4103–6.4637 mg mL−1,
1.4946–6.5796 mg  mL−1 and 1.4819–6.5266 mg mL−1, respec-
tively. It was  seen that the initial calibration set covered a wide
concentration range, within which concentrations of samples in
the three test sets spread.

3.2. Data pretreatment

As seen in Table 1, the original NIR spectra (see Fig. 1) without
any preprocessing were found to bear the good capability in both
calibration and validation. In mwPLS, the spectra window size was
set at 21 and the RMSECV for each window was calculated by PLS
algorithm (see Fig. 2). The wavelength region of 8500–7300 cm−1

with relative low RMSECV was selected and applied in the following
study.

3.3. Calibration and validation of quantitative model

The calibration results (see Fig. 3) indicated that six latent factors
with the cumulative PRESS of 10.307 were enough. The valida-
tion results of Batches 4, 5 and 6 are shown in Table 2. It could be
found that the RMSEP and BIAS of Batches 5 and 6 were larger than
Batch 4, while the RPD decreased. The phenomenon of residual drift
was  observed in the residual plots of Batches 5 and 6 (see Fig. 4).
The inferior prediction capability of the established model for new
batches could be accounted for the uncertain variations between
different batches. On the other hand, the result demonstrated a
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Fig. 1. Raw NIR spectra of Batch 3.

Table 2
Validation statistics of Batches 4, 5 and 6.

Batch rval RMSEP RPD BIASval

4 0.9940 0.156 8.45 0.111
5 0.9962 0.377 3.61 0.313
6  0.9944 0.320 4.04 0.279

calibration model updating along with the proceeding of the pro-
duction process to improve the performance of the model.

3.4. Development of calibration subset

Since the initial model built may  contain some useless and
redundant spectral data or samples, a representative calibration
subset was constructed by boundary samples in OSC before model
updating. A theoretical discussion on the advantages and rationality

Fig. 2. Moving window PLS regression. Red dash line is RMSECV (4 latent factors)
for  the global model. Blue line is the mean spectrum scaled by the vertical axis. Black
line  represents the minimum RMSECV for each interval. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web  version
of  this article.)

of the representative subset selection in such a way could be
referred to Ref. [27]. According to Eqs. (4) and (5),  the SIC resid-
uals and SIC leverages were computed. Then 51 boundary objects
(green circles in Fig. 5) out of 180 samples in the initial calibration
set were designated as the most significant objects for modeling,
and the remaining samples (black squares in Fig. 5) may  be deemed
as redundant.

The predictability of the new PLS model constructed by the
51 boundary samples using 6 latent factors was validated by test
set from Batch 4. The obtained results were with RMSEP = 0.134,
BIASval = 0.101 and RPD = 9.89, revealing that the selected calibra-
tion subset could predict samples with a better accuracy and was
of maximal representation with respect to the initial model.

Fig. 3. (A) Calibration characteristics vs. number of latent factors; (B) correlation diagram for chlorogenic acid (validation set is from Batch 4).

Fig. 4. (A) Residuals plot of Batch 4; (B) residuals plot of Batch 5; (C) residuals plot of Batch 6.
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Table 3
Comparison of the performance of the updated models validated by Batch 6.

Strategy Model No. of samples in
calibration set

LVs Calibration Validation

RMSEC RMSECV BIAScal RMSEP RPD BIASval

1 A 51 6 0.330 0.399 0.263 0.268 4.82 0.224
B 111 6 0.249 0.279 0.175 0.261 4.95 0.221
C 163 6  0.255 0.272 0.188 0.199 6.49 0.174

2 I  180 6 0.209 0.239 0.157 0.320 4.04 0.279
II  200 6 0.211 0.230 0.159 0.314 4.12 0.277
III  220 6 0.233 0.246 0.183 0.283 4.57 0.250

Fig. 5. SIC object status plot for the initial calibration set. (For interpretation of the
references to colour in the text, the reader is referred to the web  version of this
article.)

3.5. Model updating

Now, it is assumed that only the initial quantitative model
(represented by Model I consisting of 180 samples) and its repre-
sentative subset (represented by Model A consisting of 51 boundary
samples) were accomplished. Then, two strategies of model updat-
ing were considered as follows:

(1) when a new batch (e.g. Batch 4) was performed, the SIC lever-
age could be computed through the NIR spectra. The samples in
Batch 4 with SIC leverage larger than 0.5 were selected out and
were quantified by HPLC. Afterwards, the spectra data and the
corresponding reference values of the selected samples were
added into Model A to rebuild a new calibration model named
as Model B. Similarly, Model C was updated by adding the pre-
ferred samples from Batch 5. According to Eq. (5),  the criteria
of SIC leverage 0.5 was set to incorporate the samples with SIC
interval larger than a half of ˇmax that approximated two times
of RMSEC.

(2) The Kennard and Stone algorithm was employed to perform the
subset selection. In our case, 20 samples were selected by the
KS algorithm from a new batch and were added into the old
model to create the updated one.

It could be imagined that both updating methods could be
performed along with the batch proceeding of the ethanol pre-
cipitation process, resulting in two  model series. In this work, the
primary model I and Model A were updated twice. Number of sam-
ples in calibration set of the two  series of models could be read
in Table 3. Batch 6 was employed to validate and analyze the per-
formance of these updated models. The calibration and validation
statistics are also shown in Table 3, from which it was seen that in
each model series, the updated model performed better than the
former one with the increased RPD and decreased RMSEC, RMSECV,
RMSEP and BIAS. Moreover, models updated by strategy (1) with
less calibration samples exerted better predictability than that by
strategy (2).

A further investigation was carried out by SIC analysis (see
Table 4). The object status plots (OSP) (see Fig. 6) were drew to
visually display the effectiveness of the updated models. Results
revealed that more and more samples were classified as insiders.
After two times of updating, there were no absolute outsiders.
In view of the overall situation, samples seemed to be moving
toward the Y axis during the course of updating, which was proved
by the decreasing mean values of SIC leverage (hmean) in each
model series in Table 4. And the mean width of prediction interval
(wmean) in each series becomes smaller and smaller, demonstrating
that uncertainty was  reduced while the model was updated. ˇmax

showed a trend of decreasing in Model series A–C, which agreed
with a general concept that modeling error should reduce when
model is expanded. However, such tendency was  a little obscure
in Model series I–III. After all, updating strategy (1) exhibited bet-
ter performance with relatively smaller wmean and hmean as well as
more insiders classified than strategy (2).

In addition, numbers of samples updated in our case by strategy
(1) for the first and second time were 60 and 52, respectively. Nev-
ertheless, if the model updating continued, the SIC leverages of the
next Batch 6 could be calculated based on Model C. And it would
be found that only 9 samples were with SIC leverages larger than

Table 4
General characteristics of the updated models by SIC analysis.

Strategy Model ˇmax ˇmax/RMSEC wmean hmean No. of insiders No. of outsiders No. of absolute
outsiders

No. of boundary
objects

1 A 1.0197 4.87 1.2217 0.5991 45 13 2 51
B  1.1112 5.27 1.3495 0.6072 46 12 2 59
C  0.8512 3.65 0.7474 0.4391 53 7 0 41

2 I  1.2241 3.71 1.908 0.7793 44 13 3 49
II  1.1452 4.6 1.5244 0.6699 46 12 2 45
III 0.8717  3.41 0.7292 0.4183 58 2 0 34

wmean and hmean represent the mean value of SIC intervals and SIC leverages for Batch 6, respectively. No. of insiders, outsiders and absolute outsiders regard to the OSC
results  of Batch 6 based on the corresponding model. No. of boundary objects regards to the OSC result of the calibration set.
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Fig. 6. SIC object status plot of Batch 6 (A) based on Model A; (B) based on Model B; (C) based on Model C; (D) based on Model I; (E) based on Model II; (F) based on Model III.

Fig. 7. Prediction quality for Batch 7 based on Model D with ˇmax = 0.8711: (A) PLS prediction (closed red dots) and SIC prediction intervals (blue bars) for samples of Batch 7;
(B)  calculated SIC leverages of samples of Batch 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the predefined criteria of 0.5. Then Model D was constructed con-
sisting of 172 objects, the prediction capability of which was  tested
by Batch 7 without reference analysis. The prediction quality for
Batch 7 based on Model D could be viewed in Fig. 7. The result was
favorable, indicating the efficiency and robustness of the strategy
(1) suggested.

4. Conclusion

Based on the PAT concept and NIR technology, a PLS model
relating NIR spectra to HPLC references was successfully built to
determine the low concentration of chlorogenic acid during the
ethanol precipitation process of water extract of Flos Lonicerae
Japonicae. However, when the developed quantitative model was
validated by new batches, a phenomenon of residual drift was
observed due to the batch-to-batch variations. In order to cope with
the fluctuations between different batches, a new model updat-
ing strategy based on SIC theory was presented. Different from the
existing model expansion methods who select samples needed to
be updated randomly or only by the information of NIR data, the
new strategy makes full utilization of the NIR spectra from the
calibration and validation sets as well as the reference analysis

results of the calibration set. Effects of model updating were eval-
uated by both the conventional statistics and SIC analysis. Results
revealed that the proposed strategy outperformed the approach
using Kennard and Stone algorithm. The course of model updat-
ing was visualized using object status plots (OSP), which would be
helpful in applications.
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