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Abstract—A three dimensional pharmacophore model was 
generated for the molecules which are responsible for anti-
platelet aggregation activities targeting platelet adp receptor 
(P2Y12). 24 structrurally diverse molecules were selected as 
training set to generate the hypothesis using Catalyst software 
4.11. The best hypothesis comprises one hydrogen- bond 
acceptor, one aromatic ring, three hydrophobic points and one 
excluded volume and shows high correlation coefficient (0.999) as 
well as low RMS deviation (1.24). It has been further validated 
towards a test set and shows high correlation coefficient of test 
set (0.978). The values of effectively active hit A% and 
comprehensive evaluation index CAI are respectively 40% and 
2.795.  The results show that the pharmacophore we built is 
reliable and can be used to screen database. Furthermore, the 
best hypothesis was used to screen TCMD (Version 2005) 
database and the four hit compounds of higher predicted activity 
were the reported anti-platelet aggregation inhibitions, which 
may be useful for further study.  
Keywords- Cardiovascular diseases; P2Y12; Pharmacophore; 
Virtual screening 

I.  INTRODUCTION 
According to the Chinese cardiovascular disease report 

2007 [1], the number of Chinese cardiovascular patients had 
been up to 230 million. Two of ten adults are suffering from 
cardiovascular disease. Every year, three million people die of 
cardiovascular disease. In recent years, the incidence of 
cardiovascular, more important, the thromboembolic diseases 
have increased and become an important reason lead to die [2]. 
Antithrombotic drugs of clinical use are generally classified 
into three kinds including anticoagulant drugs, anti-platelet 
drugs and thrombolytic drugs. The anti-platelet drugs are the 
most widely used, accounting for more than 50% of 
antithrombotic drugs [3]. P2Y12 is the important anti-platelet 
receptor [4-6]. 

P2Y12 is a subtype of ADP receptor which can promote 
platelet aggregation [7]. ADP is the most important factors 
related to physiology bleeding and thrombosis, so the 
important ways of anti-platelet drugs effects are to block the 
ADP receptor on platelet membrane. P2Y12 is not only ADP 
effect receptor but also the target of inhibitors of ADP receptor. 
P2Y12 is the main receptor in ADP induced platelet aggregation 
action [8]. Therefore, P2Y12 plays a central role in platelet 
activation and becomes an important target of anti-platelet 
drugs. P2Y12 only exists in platelet membrane. So P2Y12 
inhibitors can prevent platelet aggregation but not affect other 
vascular responses that mediated by ADP [9]. 

In this paper, we have developed a quantitative 
pharmacophore model whose purpose is to identify the critical 
pharmacophoric features necessary for potent P2Y12 inhibitors 
as well as to clarify the quantitative structure-activity 
relationship for the known P2Y12 inhibitors. Correlation 
between actual and estimated biological activities was 
calculated to optimize the hypothesis [10]. Further, hypothesis 
was evaluated by two internal databases (test database and 
active-MDDR database) that we have built. Then the best 
hypothesis was used to screen TCMD (Version 2005) database, 
158 compounds were hit and the four of higher predicted 
activity were the reported anti-platelet aggregation inhibitions, 
which may be useful for further study. 

II. MATERIALS AND METHODS  

A. Biological data 
The pharmacophore modeling studies considered a total set 

of 32 P2Y12 inhibitors of diverse structures derived from The 
Binding Database with Ki values of 0.38-25100nM 
(http://www.bindingdb.org/bind/index.jsp). This dataset was 
divided into 24 training set compounds and 8 test set 
compounds. The structures and biological activities of training 
set and test set are showed in Fig.1 and Fig.2 respectively. 
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Figure.1 Training set compounds 
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    31 (Ki 17nM)         32 (Ki 2440nM )   
Figure2.  Test set compounds 

B. Modeling tool 
All the pharmacophore modeling calculations were carried 

out by using the HypoGen module implemented in Catalyst 
4.11 software package (Accelrys) [11] on IBM workstation. 

C. Selection of training and test set 
In the selection of the training set, some basic requirements 

namely the activity range in the total set (4-5 orders of 
magnitude) [12-13] and the presence of maximum structural 
information were considered. From the methods used for the 
classification of the dataset into training and test sets, the 
Kennard-Stone (KS) method was chosen so as to ensure the 
compounds of training set and test set can be evenly distributed 
in a space distance and can make sure that the training set has a 
good representative [14]. 

D. Conformational analysis  
All molecular structures in the training set and test set were 

built in 2D/3D Visualizer within Catalyst and minimized to the 
closest local minimum. Diverse conformational models for 
each compound were generated using an energy range of 20 
Kcal/mol by the BEST flexible conformation generation option 
available in Catalyst. Maximum number of conformers was 
specified to 250 for each molecule to ensure maximum 
exploration of the conformational space. 

E. Generation of pharmacophore hypotheses  
Pharmacophore models were generated from the training 

set using the HypoGen module in Catalyst which can be used 
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to correlate the observed biological activities for a series of 
compounds with their chemical structures. The quality of the 
generated pharmacophore hypothesis was evaluated by the cost 
functions calculated using the Catalyst/HypoGen module 
during hypothesis generation. The overall cost contains the 
correlation coefficient (correl), root mean square deviation 
(RMS), total cost, fixed cost, and null cost. A good 
pharmacophore model should have a high correlation 
coefficient, low total cost and RMS values. The total cost 
should be close to the fixed cost and away from the null cost. 
The difference between the cost of the generated hypothesis 
and the cost of the null hypothesis ( Cost) signifies the 
reliability of a pharmacophore model. A meaningful 
pharmacophore hypothesis may result when the value of 
Cost is more than at least 20 bits. A value of 40-60 bits of 
Cost for a pharmacophore hypothesis may indicate that it has 
75-90% probability of correlating the data [15]. 

For evaluation purposes, two internal databases were built 
within Catalyst using the compounds of test set (test database) 
and 35 compounds with known P2Y12 inhibitory activity in 
MDDR (MDL Drug Database Report: Version 2007.2) (active-
MDDR database). 

Besides the cost functions calculated in the 
Catalyst/HypoGen module, the screening database method was 
also selected to evaluate the pharmacophore model. Fig.3 is the 
diagram of the results of the database screening. D is for the 
total number of compounds in database and A represents the 
number of active compounds. Ht is for the total number of hit 
compounds from database D and Ha represents the number of 
hit compounds from database A. The pharmacophore was used 
to screen database and evaluated by a series of indices. Indices 
include effectively active hit A% (A higher value of A% is for 
a stronger ability to identify active compounds), identify 
effective index N (A higher value of N is for a stronger ability 
to distinguish between active compounds and inactive 
compounds). In order to evaluate N and A% comprehensively, 
our research group puts forward the comprehensive evaluation 
index CAI (A higher value of CAI is for a better 
pharmacophore model) 

Figure3. Results of the database screening 

F. Database screening  
Chemical feature-based 3D pharmacophore models built 

within the Catalyst software can be used as queries for 3D 
database screening. Virtual screening of such databases can 
serve two main purposes: first, validating the quality of the 
generated pharmacophore models by selective detection of 
compounds with known P2Y12 inhibitory activity, and second, 
finding novel, potential leads suitable for further development. 

 In Catalyst, two algorithms for database screening can be 
chosen: the Fast Flexible Search and the Best Flexible Search. 
In our study, all screening experiments were performed by 
using the Best Flexible Search algorithms. 

III. RESULTS AND DISCUSSION  

A. Generation of pharmacophore hypotheses  
An initial analysis  of training set revealed that five 

chemical feature types such as hydrogen-bond acceptor (A), 
hydrogen-bond donor (D), hydrophobic (H), negative ionizable 
(N) and ring aromatic (R) effectively map almost of the 
compounds in the training set. These features were selected and 
set excluded volume value of 1 to build a series of 
pharmacophore models using a default uncertainty value of 3. 
Other parameters were kept at their default values. In this part, 
ten top ranked pharmacophore models were generated and 
were used to screen the test database and calculated the linear 
correlation coefficient (Correltest) by using the actual activity 
value and estimated value of the hit compounds. The results are 
showed in Table 1. 

TABLE1. The top ten ranked pharmacophore and the results of database 
screen 

 

 Table1 showed that Hypo4 and Hypo8 pharmacophores 
have higher values of correlation coefficient of training set and 
test set but were not perfect, so they were selected and 
optimized by changing the allowed space tolerance (Tolerance, 
T) (The value of T is represent for the radius of sphere of the 
feature and the size of sphere is for the accuracy of the 
position.) between each feature to be the 0.9 times, 0.8times 
and 0.7 times of the default values. Then we use the produced 
pharmacophore models to screen the test database, active-
MDDR database and MDDR (MDL Drug Data Report: 
Version 2007.2) and calculate values of Correltest, A%, N and 
CAI (D=177953, A=35). The results are showed in Table 2. 
(4t0.9-4t0.7 are the pharmacophore models that change the 
values of T to be 0.9 times, 0.8 times and 0.7 times of the 
default values of Hypo4 pharmacophore and 8t0.9-8t0.7 are the 
pharmacophore models that change the values of T to be 0.9 
times, 0.8 times and 0.7 times of the default values of Hypo8 
pharmacophore) 

 

 

Hypo Feature Max  
Fit 

Total 
Cost RMS Correl Null 

Cost 
 

Cost Correltest 

1 AHHRV 10.07  116.75  1.04  0.91  152.72  36.0  0.05  

2 DHHRV 7.81  116.96  1.11  0.89  152.72  35.8  0.04  

3 AAHH 8.70  119.13  1.18  0.88  152.72  33.6  0.49  

4 AHHHV 8.73  119.33  1.19  0.87  152.72  33.4  0.69  

5 AHHHRV 11.04  119.55  1.19  0.87  152.72  33.2  0.11  

6 HHHHRV 10.51  119.95  1.21  0.87  152.72  32.8  only hit 1 

7 AAHH 9.76  120.05  1.18  0.88  152.72  32.7  0.52  

8 AHHHRV 9.76  120.72  1.24  0.86  152.72  32.0  0.69  

9 ADDH 9.18  120.82  1.23  0.87  152.72  31.9  no hit 

10 ADHR 10.23  121.21  1.20  0.87  152.72  31.5  0.10  

D 

A Ha Ht 
A%=(Ha/A)×100 
N= (Ha/ Ht) ÷ (A/D) 
CAI=N×A% 
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TABLE2.  Optimization of Hypo4 and Hypo8 

Hypo Feature Ha Ht A% N CAI Correltest Correltrain 

4t0.9 AHHHV 22 42046 63% 2.660  1.672  0.004 0.694 

4t0.8 AHHHV 21 33715 60% 3.167  1.900  0.002 0.266 

4t0.7 AHHHV 16 25735 46% 3.161  1.445  0.955 0.999 

8t0.9 AHHHRV 17 32837 49% 2.632  1.279  0.003 0.994 

8t0.8 AHHHRV 17 19515 49% 4.429  2.151  0.95 0.996 

8t0.7 AHHHRV 14 10188 40% 6.987  2.795  0.978 0.999 

 
Through the analysis of the results, we select 8t0.7 to be the 

optimal pharmacophore model and the model is showed in 
Fig.4. 

 
Figure4. The optimal pharmacophore model (8t0.7) 

B. Database screening  
The best model, 8t0.7, was used as a 3D query to screen 

TCMD (Version 2005). TCMD screening yielded a hit list of 
158 compounds and the four of higher predicted activity 
(Acutifolin palmitata, Dauricine, Fangchinoline and Nobiletin) 
were the reported anti-platelet aggregation inhibitions. The best 
model mapped to the four hit compounds are showed in Fig5, 
Fig6, Fig7 and Fig8 respectively. 

                          
Figure5. 8t0.7 mapped                        Figure6. 8t0.7 mapped 

with Acutifolin palmitata               with Dauricin 

                                  
Figure7.  8t0.7 mapped                        Figure8. 8t0.7 mapped 
with Fangchinoline                               with Nobiletin 

IV. CONCLUSION 
In this study, we have built pharmacophore models of 

P2Y12 inhibitors using Catalyst software. The optimal 
pharmacophore model contains six features: one hydrogen-

bond acceptor (A), one ring aromatic (R), three hydrophobic 
points (H) and one excluded volume (V). The values of linear 
correlation of actual activity and estimated activity of 
compounds in training set and the hit compounds in test set are 
respectively 0.999 and 0.978. And the values of effectively 
active hit A% and comprehensive evaluation index CAI are 
respectively 40% and 2.795. The results of database screen also 
showed the pharmacophore model is reliable and can be used 
for database screening and lead compounds found, etc. 
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