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a b s t r a c t

Our previous work had proved that accuracy profile theory could be employed as a means of validating

one PLS model in Chinese material medica system. In this paper, accuracy profile theory is proposed as

a powerful decision tool to demonstrate the prediction performance of multi-model at each

concentration level rather than all concentration levels. Partial least square (PLS), interval partial least

square (iPLS), backward interval partial least square (BiPLS) and moving window partial least square

(MWPLS) were selected to construct visible and near-infrared (vis/NIR) spectroscopy models. Chemo-

metric indicators, i.e., determination coefficient (R2), root-mean-square error of prediction (RMSEP) and

ratio of performance to inter-quartile (RPIQ), were used to select the optimum model. However, the

results clarified that these commonly used indicators could not clearly demonstrate different PLS

models’ ability because these indicators depend on all concentration levels to assess the multi-model.

Therefore, ‘‘total error concept’’ (accuracy profile theory) was introduced to assess the ability of multi-

model at each concentration level. Analytical methodology parameters, i.e., linearity, relative bias,

uncertainty, repeatability, intermediate precision, lower limit of quantification (LLOQ) and risk, were

calculated by accuracy profile theory. Final results showed that model selection strategy which was

based on model assessment at every concentration level was more sensitive than the one based on all

concentration levels. The analytical procedures involved in this work ensure that model selection

strategy using total error concept is coherent.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Near-infrared (NIR) spectroscopy has gained great attention to
date as a Process Analytical Technology (PAT) tool because it can
provide rapid information collection with minimal or no sample
preparation, and has been widely used in the quantitative and
qualitative analysis of pharmaceutical products [1–5]. Compared
with mid-IR spectra, whose absorbance bands are directly inter-
pretable due to chemical peak specificity, NIR spectra are difficult
to interpret due to their nature (overtones and combination bands
of vibrational energy levels). Consequently, a calibration model is
required for NIR analysis [6].

The NIR linear model is mainly established based on partial
least square (PLS). The theory and application of PLS in spectro-
metry have been discussed by several researchers [7]. Recently,
a PLS model has been developed including interval partial least
square (iPLS) [8], genetic algorithm-interval partial least square
(GA-iPLS) [9], forward interval partial least square (FiPLS) [10],
ll rights reserved.
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backward interval partial least-square (BiPLS) [10], genetic
algorithm-partial least square (GA-PLS) [11], and moving window-
partial least square (MWPLS) [12].

These different PLS algorithms were previously assessed
according to the usual chemometric indicators: root mean square
error (RMSE), standard error of prediction (SEP), ratio of perfor-
mance to deviation (RPD), ratio of performance to inter-quartile
(RPIQ) [13], determination coefficient (R2) and bias. However, it
has not been reported whether these indicators can be used to
accurately assess PLS algorithm. In this paper, we clarified it, and
presented a total error (systematic and random errors) concept to
assess different PLS algorithms. Based on ‘‘b-expectation toler-
ance intervals’’, accuracy profile theory was introduced by con-
sidering the total error [14–17].

Besides, accuracy profile theory fully complies with the ICH
Q2(R1) regulatory documents as it integrates all required analy-
tical methodology parameters, i.e., linearity, relative bias, uncer-
tainty, repeatability and intermediate precision, the lower limit of
quantification (LLOQ) and risk [18–20]. Therefore, a novel model
selection strategy was given using total error concept (accuracy
profile). In this research, a multi-component matrix, Yinhuang
oral solution was used as an example. Different PLS algorithms
were assessed by chemometric indicators and accuracy profile.
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2. Materials and methods

2.1. Materials

Yinhuang oral solution was purchased from Jvrong Pharma-
ceutical Group Co., Ltd. (Jiangsu, China) and deposited in the Key
Laboratory of TCM-information Engineering of State Administra-
tion of Traditional Chinese Medicine (No. 110201). Baicalin
reference standard (lot number: 110777–201005) was supplied
by the National Institute for the Control of Pharmaceutical and
Biological Products (Beijing, China). HPLC grade methanol was
purchased from Tedia (USA). Deionized water was purified by a
Milli-Q water system (Millipore Corp., Bedford, MA, USA).

2.2. Design of experiment

135 samples of three lots Yinhuang oral solution were obtained
containing a series of baicalin concentration levels. An experimental
protocol was created sequentially for the calibration and validation
steps in order to obtain a robust model (Table 1). Seventy-two sample
sets were obtained in the calibration set. The validation set (63
samples) was established in the same way.

2.3. NIR equipment and software

The visible and NIR spectra were collected in the transmission
mode using an XDS rapid liquid analyzer with VISION software
(Foss NIR Systems, Silver Spring, MD, USA). The sample was held
in a circular sample cuvette with plastic cap (optical path is
8 mm). Each spectrum was the average of 32 scans with a
wavelength increment of 0.5 nm. The range of spectra was from
400 nm to 2500 nm. Each sample was analyzed three times and
the mean value of three spectra was used in the following
analysis.

Data analysis was performed using home-made routines progra-
mmed in MATLAB code (MATLAB, The MathWorks, Massachussetts).
The toolbox used to select the most informative variables, called iPLS,
BiPLS and MWPLS, was downloaded from http://www.models.kvl.dk/.
The calculation of the accuracy profile was adopted by e. noval V3.0
software (Arlenda, Li�ege, Belgium).

2.4. HPLC method

Amounts of baicalin were accurately weighed using an
XS205DU electronic balance (Mettler Toledo, Greifensee,
Schweiz), and dissolved with 5 mL of methanol. The reference
method used for baicalin determination was the HPLC assay
recommended by the Chinese Pharmacopoeia (ChP, 2010 Edition)
for Yinhuang oral solution. An Aglient 1100 series HPLC appara-
tus, equipped with a quaternary solvent delivery system, an auto-
sampler and a DAD detector, was used. The concentration of
baicalin was analyzed by reverse-phase chromatography on an
ODS column (150 mm�4.6 mm, 5 mm, Waters, USA) with iso-
cratic elution of the mobile phase consisting of methanol, water
and phosphoric acid (50:50:0.2, v/v) at a flow rate of 1.0 mL/min.
Table 1
Variability sources included in the calibration and validation sets.

Calibration set Amount of variability Validation set

Variability sources

Lots 3

Operators 2 2

Days 2 2

NIR acquisitions 3 3
A column temperature of 30 1C, and detection wavelength at
274 nm were set.

2.5. Theory and algorithm

2.5.1. iPLS model

The iPLS algorithm used was downloaded from the Royal
Veterinary and Agricultural University of Denmark. The principle
of iPLS algorithm is to split the spectra into smaller equidistant
regions and, afterward, to develop PLS regression models for each
of the sub-intervals, using the same number of latent factors.

Thereafter, an average error is calculated for every sub-interval
and for the full-spectrum model. The region with the lowest error
is chosen. An optimized region can be found by subtracting or
adding new factors. One of the main advantages of this method is
the possibility to represent a local regression model in a graphical
display, focusing on a choice of better intervals and permitting a
comparison among interval models and the full-spectrum model.
This method is intended to give an overview of the data and can
be helpful in interpretation.

2.5.2. BiPLS model

The BiPLS algorithm used here was developed by Norgaard
et al. [8]. As in the iPLS model, the data set is split into a given
number of intervals, but now PLS models are calculated with each
interval left out, i.e., if one chooses 40 intervals then each model is
based on 39 intervals leaving out one interval each time. The first
left out interval is the one that gives the poorest performing
model with respect to root mean square error (RMSE). This
procedure is continued until one interval remains.

2.5.3. MWPLS model

MWPLS is a modeling technique that can be thought of as a
series of diagnostic PLS regressions based on all continuous
window size ‘‘H’’ in the parent data set. In effect, a window of
size H is ‘‘moved’’ across the data set to collect modeling
information. The model quality and number of latent variables
(LVs) required for model production during this process can then
be used to find the best spectral region(s) of size H. The original
MWPLS work uses the sum of squared residues (SSR) as a
measure of a model fit:

SSRj ¼
XI

i ¼ 1

Yi,j,pre�Yi,j,ref

� �2
ð1Þ

where Yi,j,pre and Yi,j,ref are the reference and predicted values of
sample i, respectively for PLS models constructed with i total
samples and j LVs. This value is calculated based on PLS models of
various LV constituency and window size H, with cross-validation
calculations performed only on the most promising combinations
of range and number of LVs.

2.5.4. Accuracy profile theory

The concept of accuracy profile is introduced based on the
fitness-for-purpose approach of the validation. The basic idea is
the acceptability limit criterion, noted by l. It is assumed that
end-users actually expect an analytical procedure to return a
result Ẑ which differs from the unknown target value Z by less
than l. This requirement can be expressed as

9Z�Ẑ9ol ð2Þ

A procedure can be validated if it is very likely that the
requirement given by Eq. (2) is fulfilled, i.e.

P 9Z�Ẑ9ol
� �

Zb ð3Þ

http://www.models.kvl.dk/
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b being the probability that a future determination falls inside the
acceptability limits. It is possible to compute the so-called
‘‘b-expectation tolerance interval’’ (b-ETI). The b-ETI is given by

d7QtkSSR ð4Þ

Q t is the b quantile of the Student’s t-distribution, d is the bias
and ks is the expansion factor:

kS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

pnB2

s
ð5Þ

with

B¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ1

nRþ1

r
; R¼

S2
B

S2
r

ð6Þ

S2
B and S2

r are the estimates of the between-conditions variance
and the within-conditions variance (repeatability). The reprodu-
cibility variance, S2

R is obtained through

S2
R ¼ S2

r þS2
B ð7Þ

It can be easily demonstrated that

k2
S S2

R ¼ S2
Rþ

nS2
BþS2

r

np
ð8Þ

The second member of the right term of Eq. (8) is the
estimation of the variance of the overall mean that can be
assimilated to the bias uncertainty for a nested design with
p conditions for experiments and n replications within each
condition. Thus

k2
S S2

R ¼ S2
RþS2

d ¼ u2ðZÞ ð9Þ

and b-ETI can be given now by

d7QtuðZÞ ð10Þ

Therefore, based on b-expectation tolerance intervals, the accu-
racy profile theory makes a visual and reliable representation for
actual and future model performance possible.
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Fig. 1. Chromatograms of baicalin reference standard (a) and Yinhuang oral

solution (b).

Table 2
Result of the PLS model with different spectral pre-processing methods.

Pretreatment Latent factors Calibration set Validation set

R2 RMSE R2 RMSE

Raw 1 0.9908 194.68 0.9889 217.2

1D 7 0.6473 1205 0.1425 1906.9

2D 3 0.4139 1553.6 0.1795 2244.1

SG 1 0.9908 194.4 0.9870 232.6

MSC 1 0.9907 195.8 0.9871 231.2

1DþSG 5 0.6455 1208.2 0.0814 1957.3

Raw: raw spectra, 1D: first derivative, 2D: second derivative, MSC: multiplicative

signal correction, and SG: Savitzky–Golay.
2.5.5. Chemometric indicators

To express the advantages of NIR-calibration models, the
optimum model was established based on RMSE, standard error
of cross validation (SECV, five segment size), SEP, RPD (RPD¼SD/
SEP), and RPIQ et al. The RPIQ parameter was proposed based on
quartiles by Veronique Bellon-Maurel, which better represents
the spread of the population. The quartiles are milestones in the
population range: Q1 is the value below which we can find 25% of
the samples; Q3 is the value below which we find 75% of the
samples; and, Q2, commonly called the median, is the value under
which 50% of samples are found. The quartiles are therefore
useful to determine equivalent ranges of population spread. For
example, inter-quartile distance IQ (Q3–Q1) gives the range that
accounts for 50% of the population around the median. The RPIQ

index, in which SD is replaced by IQ, is suitable for any data
distributions (RPIQ, RPIQ¼ IQ/SEP). The related chemometric indi-
cators were calculated through the following relationships:

RMSEP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i ¼ 1 yi�ŷi

� �2

n

s
ð11Þ

BIAS¼
Sn

i ¼ 1 yi�ŷi

� �
n

ð12Þ

SEP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i ¼ 1 yi�ŷi�BIAS
� �2

n

s
ð13Þ
3. Results and discussion

3.1. Quantitative analysis of baicalin by HPLC method

Fig. 1 shows a typical HPLC chromatogram of baicalin reference
standard and a sample of Yinhuang oral solution. The retention time
of the baicalin in the Yinhuang oral solution was the same with the
reference standard. The calibration curve of the HPLC method was
investigated before the real sample analysis. The calibration curve
exhibited good linearity (R2

¼0.9990) within the baicalin content
range (0.051–0.450 mg). It can be concluded that the HPLC method
satisfied the demand of quantitative analysis. Therefore, the reference
values were accurate and could be used in NIR calibration models.

3.2. Chemometric model and model selection using usual

chemometric indicators

3.2.1. PLS model

It is generally known that the spectral pre-treatments and the
number of latent factors are critical to obtain a quantitative
model. To predict the baicalin concentration profile, the calibra-
tion model referred to as PLS was built based on different spectral
preprocessing treatments. The internal cross validation was used
with a segment size of five. As seen from Table 2, raw spectra



Table 4
Selection of the most efficient interval regions through BiPLS.

Intervals numbers Selected interval RMSE Number of variables

28 26 138.07 4200

27 28 131.41 4050

26 27 127.41 3900

25 25 122.98 3750

24 4 119.14 3600

23 21 118.52 3450

22 22 118.06 3300

21 5 116.60 3150

20 3 116.19 3000

19 24 115.86 2850

18 23 114.93 2700

17 20 110.84 2550

16 19 107.05 2400

15 14 106.78 2250

14 15 106.50 2100

13 2 105.95 1950

12 16 100.44 1800

11 6 94.44 1650

10 9 94.31 1500

9 7 94.25 1350

8 8 94.17 1200

7 10 94.09 1050

6 12 92.64 900

5 17 92.89 750

4 11 92.50 600

3 18 94.48 450

2 13 94.85 300

1 1 100.11 150
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Fig. 2. Cross-validate prediction errors (RMSECV) for 13 window size and 7 latent

variables for the full-spectrum PLS model.
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were obviously superior to those of other spectral preprocessing
methods for the PLS model. The calibration gave RMSE and R2

values of 194.68 mg/mL and 0.9908, respectively. In the validation
process, the RMSE and R2 respectively were 217.2 mg/mL and
0.9889.

3.3. iPLS model

iPLS algorithm was applied in model calibration and the raw
spectrum was divided into different sub-intervals. The optimal
interval numbers were selected according to the lowest RMSE. As
seen in Table 3, the number of interval selected was 38. It could
be observed that interval number 11 provided models with best
model performance compared with other models. The selection of
spectral sub-intervals corresponded to 950–1005 nm.

3.3.1. BiPLS model

As for the BiPLS model, the data set was also split into different
intervals. The most efficient interval number was 28, and models
were calculated with each interval left out (the BiPLS result of
other interval numbers is shown in the Supporting information).
The first left out interval was the number 26 and this gave the
poorest model with respect to RMSE. This procedure was con-
tinued until one interval remained (interval 1). The results are
presented in Table 4. From Table 4, the RMSE of models decreased
at first, and then increased as intervals were left out continually.
It could be observed that the BiPLS model with best model
performance was based on 4 intervals which were interval 11,
18, 13 and 1, with the RMSE as 92.5 mg/mL.

3.3.2. MWPLS model

MWPLS can provide informative regions and the approximate
latent factors. The informative regions can be optimized by
different moving window sizes. The moving window H varied
from 13 to 41. The result demonstrated that the given window
size has no significant effect on the selection of informative
regions (data shown in Supporting information). However, a small
window size shows weaker interference of the backward points
and is expected to provide more accurate information about the
position of the informative region than a big window size.
Therefore, moving window size was selected as 13. From Fig. 2,
the selection variables corresponded to 715–745 nm and 953–
957 nm, and RMSE of the calibration model was 109.80 mg/mL.

3.3.3. Model selection using usual chemometric indicators

Table 5 describes prediction regressions for four multivariate
models (the results of the correlation diagram between NIR
predictions and HPLC results are shown in Supporting
information). The optimum model was determined by the R2,
Table 3
Result of the iPLS Model with different sub-interval numbers.

Interval

numbers

Selected

interval

Latent

factors

Calibration set Validation set

R2 RMSE R2 RMSE

20 6 4 0.9953 138.27 0.9952 142.69

22 6 3 0.9953 137.93 0.9948 146.17

24 7 4 0.9959 129.60 0.9954 137.40

26 7 3 0.9950 142.94 0.9949 146.92

28 8 2 0.9955 135.84 0.9955 137.37

30 8 3 0.9945 151.18 0.9944 156.82

32 9 3 0.9887 215.64 0.9869 233.15

34 10 3 0.9937 161.22 0.9931 168.31

36 10 4 0.9960 128.83 0.9957 133.40

38 11 4 0.9963 122.75 0.9961 127.18

40 11 4 0.9962 124.50 0.9960 130.40
RMSEP, RPD, RPIQ, etc. The BiPLS model performance was the best
among four models according to RMSEP and R2 indicators; and the
iPLS model was a little worse. However, if RPIQ parameter was
selected as evaluation indicator, the MWPLS model performance
was better than that of the BiPLS model. Sequentially, an inter-
esting result was found that RPIQ value of the iPLS model was
higher than that of the PLS model, despite the worse RMSEP and
R2 values. Therefore, above chemometric indicators reflected the
integral performance of each model, but it did not fully exhibit
accurate assessment on each concentration level of sample sets.

3.4. Model selection based on total error concept

Accuracy profile (total error concept) was used to evaluate the
model performance at each concentration level, as shown in Fig. 3.
The acceptance limits were set at 710% while the maximum risk to
obtain results outside these acceptance limits was set at 5%. LLOQ in
each model is obtained by calculating the smallest concentration
beyond which the accuracy limits or b-expectation limits exceed the
acceptance limits.

The PLS model was relatively unstable and points move toward
the line of acceptance limits as concentration levels ranged from



Table 5
Statistics from different models.

Models R2 RMSEP Min Max Mea Med. Q1 Q3 SD Skew Kurtosis RPIQ

PLS 0.9918 152.85 1356 6544 4159 4733 2384 5748 1678 �0.32 �1.27 22.1

iPLS 0.9760 261.66 1283 6600 3968 4401 2061 5783 1791 �0.10 �1.34 27.1

BiPLS 0.9947 122.63 1403 6638 4136 3661 2162 5900 1772 �0.21 �1.36 33.2

MWPLS 0.9945 125.25 1297 6625 4118 4549 2241 5889 1730 �0.11 �1.34 34.8

Fig. 3. Accuracy profiles of four models: (a) PLS, (b) iPLS, (c) BiPLS and (d) MWPLS. The plain line is the relative bias. The dashed lines are the b-expectations tolerance

limits (b¼95%) and the dotted lines represent the acceptance limits (710%).
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1.0 mg/mL to 3.5 mg/mL. The bias becomes larger at intersection of
3.81 mg/mL. As for the iPLS model, it showed the largest bias
compared with other models. The LLOQ was 4.34 mg/mL. And for
BiPLS and MWPLS models it showed reduced relative error and
indeed it can be observed that the b-expectations tolerance limits
were included within the 75% acceptance limits at 3.37 mg/mL and
3.64 mg/mL concentration levels for two models. Furthermore, the
MWPLS model had the lowest LLOQ, which was 2.08 mg/mL.
Therefore, the MWPLS model was the most adequate one for
Yinhuang oral solution.

In addition, Table 6 shows the ICH Q2(R1) validation criteria.
The analytical properties, accuracy, precision and uncertainty
could be observed for each model. The MWPLS model was still
the most accurate one. The relative bias value was located at a
maximum of �4.27% around the measured result. The risk value
even attached to 0 at several concentration levels. Compared with
the MWPLS model, the accuracy deteriorated in the iPLS model
and the PLS model, especially at low concentration level. Cer-
tainly, the result indicated that each model provides good
precision result. The overall difference of precision values was
not obvious.

Finally, the linear profiles of the prediction models are shown
in Fig. 4. For the PLS model, the regression equation was
expressed as Y¼58.75þ0.9803X with R2

¼0.9923; for the iPLS
model, the regression equation was Y¼�411.2þ1.047X with
R2
¼0.9960; for the BiPLS model, the regression equation was

Y¼�204.9þ1.038X with R2
¼0.9973; and for the MWPLS model,

the regression equation was Y¼�109.5þ1.011X with
R2
¼0.9969. It is well known that the slope and intercept closing

to 1 and 0 respectively confirm the absence of proportional and
constant total error of the model. The linearity results considering
slope and intercept value in each multivariate calibration model
demonstrated that the MWPLS model was still the best model for
Yinhuang oral solution.

Therefore, a crucial point is to ensure that total error-based
approaches should be considered in model selection strategy.
Accuracy profile allows us to perfectly select reliable model by
b-expectation tolerance interval.



Table 6
ICH Q2(R1) validation criteria in each calibration model.

Models LEV Accuracy Precision Uncertainty

REB RTL RIS REP INP UB REU

PLS 1714 �7.23 [�17.44, 2.98] 29.07 4.83 4.83 16.90 9.87

2203 5.99 [�5.00, 16.98] 22.34 4.79 4.79 30.44 9.96

3372 1.24 [�5.18, 7.66] 0.78 2.50 2.72 30.35 5.74

3642 2.42 [�6.12, 10.96] 4.24 2.84 3.46 46.84 7.39

4752 1.20 [�2.11, 4.52] 0.001 1.57 1.57 15.22 3.20

5046 2.25 [�3.53, 8.04] 0.92 1.60 2.22 45.31 4.79

6274 �2.68 [�5.89, 0.52] 0.002 1.52 1.55 18.63 3.15

iPLS 1714 �17.97 [�29.12, �6.81] 92.35 5.28 5.28 18.46 10.77

2203 �8.92 [�20.45, 2.62] 42.21 5.02 5.02 31.95 10.46

3372 �11.92 [�20.40, �3.45] 70.68 1.88 3.05 44.51 6.65

3642 �7.78 [�12.11, �3.44] 14.14 1.89 1.89 19.86 3.93

4752 �5.19 [�8.76, �1.62] 0.53 1.69 1.69 16.40 3.45

5046 �2.62 [�5.70, 0.45] 0.02 1.22 1.31 21.43 2.76

6274 �1.32 [�4.93, 2.30] 0.001 1.70 1.74 21.47 3.55

BiPLS 1714 �10.12 [�19.15, �1.08] 51.05 4.28 4.28 14.95 8.73

2203 �2.52 [�11.21, 6.18] 4.68 3.79 3.79 24.09 7.88

3372 �4.92 [�8.41, �1.43] 0.42 1.52 1.52 14.80 3.16

3642 �1.78 [�6.88, 3.32] 0.27 2.01 2.17 25.84 4.57

4752 0.17 [�1.82, 2.17] 0.00 0.88 0.93 10.97 1.92

5046 2.59 [�2.47, 7.65] 0.54 1.58 2.01 39.05 4.31

6274 �0.17 [�2.12, 1.79] 0.00 0.95 0.95 9.925 1.93

MWPLS 1714 �4.27 [�19.44, 10.91] 24.27 5.10 6.50 38.83 13.77

2203 0.95 [�6.96, 8.85] 1.98 3.44 3.44 21.90 7.17

3372 �4.57 [�8.67, �0.47] 0.71 1.79 1.79 17.37 3.72

3642 �3.87 [�8.98, 1.25] 1.16 2.23 2.23 23.43 4.64

4752 �2.67 [�5.22, �0.11] 0.00 1.16 1.20 13.34 2.46

5046 0.01 [�3.00, 3.02] 0.00 1.27 1.30 19.79 2.72

6274 �0.05 [�2.34, 2.25] 0.00 1.11 1.11 11.65 2.26

LEV: Level (mg/mL); REB: Relative bias (%); REP: Repeatability (RSD %); INP: Intermediate precision (RSD %); RTL: Relative expectation tolerance limits (%); RIS: risk (%); UB:

uncertainty of the bias (mg/mL); REU: relative expanded uncertainty (%).

Fig. 4. Linear profile of different PLS models. The dashed limits in this graph correspond to the accuracy profile, i.e. the b-expectation tolerance limits expressed in absolute

values. The dotted curves represent the acceptance limits at 710% expressed in the concentration unit. The continuous line is the identity line y¼x.
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4. Conclusion

Throughout this paper, we proposed to conduct model selection
base on the total error concept. Based on chemometric indicators
and accuracy profile, different PLS models (PLS, iPLS, BiPLS and
MWPLS) were assessed to quantify baicalin content in multi-
component matrix. Usual chemometric indicators cannot fully
assess the model ability in each low content range. Further, using
the calculated tolerance interval, analytical methodology parameters
i.e. linearity, relative bias, uncertainty, repeatability, intermediate
precision, the LLOQ and risk were calculated to assess the model
performance at each concentration level. In conclusion, a promising
analysis of model selection strategy based on the total error concept
(accuracy profile theory) was highly recommended to develop more
robust model.

The strategy presented in this article is limited to lab data, and
should be extended to manufacture data of CHM, including different
low-concentration calibration sets. Additional research efforts are
necessary to thoroughly evaluate the advantage of the total error-
based approaches in model selection application, and to identify all its
strengths and limitations.
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