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To transfer a calibration model in cases where the standardization samples are rare or unstable, a method based on
orthogonal space regression (OSR) is proposed. It uses virtual standardization spectra to account for
response changes between instruments or batches. A comparative study of the proposed OSR, piecewise direct
standardization, finite impulse response, orthogonal signal correction, and model updating (MU) was conducted
on both pharmaceutical tablet data and chlorogenic acid data. The results of these studies suggest that both the
OSR and the MU are superior to the other transfer techniques in terms of root-mean-squared error of prediction
and ratio of performance to interquartile distance. Moreover, OSR requires no identical standard samples, and it
avoids re-optimizing the transfer models. In conclusion, both the differences among spectra measured on different
spectrometers and the differences between different batches can be corrected successfully using the OSR method.
Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The extraction of chemical information from rather featureless
spectroscopic signals has been one of the notable successes of
multivariate calibration approaches, and these tools have been
applied to various analytical techniques including near-infrared
(NIR) spectroscopy.With the aid ofmultivariate calibrationmethods
such as partial least squares (PLS) and principal components
regression (PCR), the quantitative information carried in the NIR
spectra of analytes can be extracted and used to build models to
predict the concentration and other properties of analytes.
These approaches are limited, however, when an elaborately

developed model is used for the prediction of external samples.
In this discussion, the external samples refer to any sample not
included in the calibration model such as those collected at a
different time, from different batch, measured using a different
instrument, and so on. Because of instrument-to-instrument
variations, inevitable long-term instrumental drift, or unexpected
sample composition changes from batch to batch, a calibration
model may become ineffective. Those variations in spectra make
it difficult to construct calibration models that are robust across
batches and instruments.
Various calibration transfer methods can be used to correct for

those variations, and most of them have been comprehensively
discussed in previous reviews [1,2]. These calibration transfers
fall into three broad categories depending on the type of
adjustment strategy. The most successfully used transfer
techniques are the standardization methods. A transfer method
proposed by Bouveresse et al. [3] corrects the predicted values
by using a simple univariate slope and bias correction. Generally,
it will work well only when the differences between instruments
are simple and systematic. However, when the instrumental
differences become more complex, approaches such as the
direct standardization (DS) or the piecewise DS (PDS) developed
by Wang et al. [4] may be more acceptable.

A standardization method modeling the relationships in the
transformed wavelet domain between spectra was investigated
by Walczak et al. [5]. The relationships between wavelet
transform coefficients of a subset of carefully selected standard
samples obtained on two instruments can be modeled through
univariate linear regression. The corrected wavelet coefficients
are converted back to the wavelength domain to make the
spectra from the new instrument to resemble those from the
original instrument. Fan et al. [6] proposed a method based on
canonical correlation analysis (CCA) to correct for the differences
among spectra measured on different spectrometers. Using a
strategy similar to CCA, a method based on spectral regression
successfully performed the transfer between instruments [7].

The second class of calibration transfer approaches includes
signal preprocessing and other data transformations. In general,
those methods do not require identical samples measured on
both spectrometers. Common transforms include the
multiplicative scatter correction [8–10], standard normal variate
[10], orthogonal signal correction (OSC) [11–13], and finite
impulse response (FIR) filtering [9,14]. These methods correct for
changes in baselines and signal-to-noise ratios that invariably
occur. However, in many situations, they cannot correct for
changes in the instrument [11]. Thus, the third type of calibration
transfer techniques, model updating (MU), is employed [11,15,16].
MU addresses the instrumental differences by incorporating the
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new instrumental information to rebuild the model. One limitation
of MU is the increasing complexity of the model.

For analysis of intermediates, especially intermediates in
pharmaceutical processes, the abovementioned methods present
a dilemma because the intermediates are susceptible to environ-
ment and of high variations among batches; furthermore, the
calibration samples must mimic these materials. Ideally, a range
of standard intermediates could be used. However, maintaining
the integrity of these standards over time and during transport
is challenging because of contamination and component
oxidization [17]. Even if the integrity of the standards is
maintained, re-measuring the standard intermediates and repli-
cating samples of such complexity in later batches are challenging.

To overcome this, a virtual standardization spectrum (VSS) was
adopted to correct for the batch-wise variation without using
actual standard samples and forms the core of the proposed
orthogonal space regression (OSR) approach. The calibration
transfer method was validated with three different batches of
chlorogenic acid in an alcohol precipitation process monitored
by Fourier transform NIR spectrometry. We show that OSR can
successfully remove variations among batches. The application
of OSR on the tablet data also indicates that it can be used to
correct for differences among spectra measured on different
spectrometers.

2. METHODS

2.1. Finite impulse response

The FIR may also be described as a moving window multiplicative
signal correction [10] and is a transfer technique that reduces
the instrumental variation in the presence of the desired,
property-induced variation without standards.

The transfer of the spectrum sj, the jth spectrum of the set S, is
achieved by the following sequence of operations [14]. First, a
window size of 2p+ 1 is predefined. Next, both the spectra sj
and r, the later of which is the mean of spectra obtained on
the target instrument (primary instrument in this study), are
mean centered in the processing window. According to usual
least squares, a regression coefficient bij is obtained by
regressing the mean-centered spectrum sj on the mean-centered
target spectrum r. Finally, the ith point of the jth transferred spec-
trum is generated by the equation

sij* ¼ sij=bij þmean rð Þ (1)

where mean(r) refers to the average value of the sequence of
numbers in r within the 2p+1 point window.

The processing window is moved one point forward, and the
centering, regression, and projection procedures described
earlier are repeated until all points in sj are transferred. It is
notable that the ends of the spectrum specifically the first and
last p points are untreated. These end points can be processed
using multiplicative scatter correction (MSC) [9] or by duplicating
the first and last p points to augment the spectrum on both
ends, separately. In this work, the later procedure is used.

2.2. Orthogonal space regression

Orthogonal space regression is proposed to make the response
obtained on a secondary batch (the batch to be transferred)
appear as if it has been measured on the primary batch that
was used to form the calibration set. The OSR algorithm corrects

the variation among batches using a VSS, which is defined as
the OSC-corrected spectrum divided by its corresponding
property value. The primary assumption here is that the
spectrum–property relationship is linear. Although this assumption
is not always correct, it is reasonable in that there are lots of
successful applications of partial least squares (PLS) for NIR data
[18]. Below gives an overview and brief explanation of the pro-
posed OSR procedure. The details of it are given in the appendix.
First, both groups of spectra (to be transferred or not) are

corrected using Westerhuis’s direct OSC algorithm (DOSC) [19].
Unlike many other versions reported in the literature, it will
always find the components that are orthogonal to the property
Y and describe the largest variation of the spectra X:

Xcorr¼X� tpT ¼ XrpT (2)

where,

r=X+t
p=XTt(tTt)�1

and X+ is the Moore–Penrose inverse of X. It is interesting to note
that the generalized inverse X�, the substitute for X+, can be
used to loosen the rigid orthogonality constraint. By doing so,
the prediction performance could be improved. The principal
component t denotes the largest singular value using principal
component analysis (PCA) on the orthogonal subspace AŶX
[19]. If more DOSC components are required, more principal
components can be extracted. Note that t is not only the one-
dimensional subspace of X orthogonal to Y but also accounts
for the maximum variance of AŶX and X. Here, cross-validation
is used to estimate the number of DOSC components.
Next, the virtual standardization spectra for both the primary

batch and the secondary batch (the batch to be transferred)
are estimated. As described earlier, the virtual spectrum is
defined as the OSC-corrected spectrum divided by its
corresponding property value and can be calculated with

vi ¼ xcorr i:=yi (3)

where, xcorri is the OSC-corrected spectrum of the ith sample, yi
is the reference property value for the ith samples, and vi
denotes the ith sample’s VSS. After the quantity-related
information is removed, the main variation retained in the
spectra can be attributed to batch differences.
Then, for any DOSC-corrected secondary spectrum, the batch-

wise variation can be further removed by using least squares
and VSS:

xtran i ¼ biasþ slope•xcorr i (4)

where bias and slope are obtained by regressing vprimary on
vtransferred, vprimary stands for the mean of primary VSS, and
vtransferred denotes the median (or mean) of the selected VSS to
be transferred.
The multivariate calibration model built under the initial

calibration conditions, that is, on the DOSC-corrected primary
spectra, can then be used to predict the concentrations of the
target constituents in the test samples from the transformed
spectrum xtran.
As illustrated in the aforementioned calculations, the proposed

method decomposes the spectra variation into three main
parts, that orthogonal to Y, that beneficial to predict Y, and that
harmful to the estimate of Y. It eliminates the spectral
differences induced by the changes in batches. This is because
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the novel method transforms two spectral spaces spanned by
the corresponding virtual standardization spectra of two
subsets of samples collected on two different batches. For the
convenience of description, the proposed method is therefore
named OSR. Please note that OSR does not require standardiza-
tion samples measured on two instruments or under two sets
of experimental conditions. It can therefore be applied to any
case, especially those in which standardization samples are rare
or unstable.

2.3. Model updating

Model updating can correct for variations by adding samples
collected on the secondary situations (situations to be
transferred) to the training set and rebuilding the calibration
model [10,20–22]. To fully span all possible situations, it is
necessary to choose an appropriate number of samples obtained
across secondary situations. Not surprisingly, the optimal
number of chosen samples varies with the amount of correction
required to make the prediction useful on the secondary spectra.
The part of samples used to update the calibration model can be
selected by Kennard–Stone algorithm (KS) [23–25].
To evaluate the accuracy of these various methods, each was

used in conjunction with calibration models based on PLS
regression. These models were then applied to predict the
transferred data in a validation set.

3. EXPERIMENTAL

3.1. Data

Two datasets were employed to investigate the performance of
the calibration transfer methods described earlier. One study is
a publicly available pharmaceutical dataset [26]. The dataset
consists of 1308 spectra of 655 pharmaceutical tablet samples
measured on two spectrometers (Foss NIR systems, Silver Spring,
MD). The transmittance spectra covering the range 600–1898 nm
at 2 nm interval are used to estimate the assay value of the active
ingredient in each individual tablet. Spectra between 780 and
1638 nm are selected for the subsequent data analysis because
the region between 600 and 780 nm extends the NIR region
suggested by International Union of Pure and Applied
Chemistry. The samples with number 19,122, 126, and 127 of
the calibration set and number 11, 145, 267, 295, 294, 342, 313,
341, and 343 of the test set were considered as potential outliers
and were excluded [27]. No extra preprocessing is performed on
the spectra mentioned earlier. The original spectra of the same
pharmaceutical tablet obtained with both spectrometers are
shown in Figure 1.
The second study monitors the chlorogenic acid concentra-

tion in the alcohol precipitation process of the Flos Lonicerae
japonicae water extractions. Three batches of extractions
concentrated to known densities were considered. Sixty samples
collected every 30 s in a 30min alcohol precipitation process
were prepared for each batch. The chlorogenic acid contents of
these samples were determined according to the Chinese
Pharmacopoeia (2010 edition, volume I) by using an Agilent
1100 high-performance liquid chromatography system (Agilent
Technologies, USA) equipped with an autosampler and a diode
array detector. The NIR spectra of these samples were collected
in transmittance mode on an Antaris Nicolet FT-NIR system
(Thermo Scientific, Madison, USA). Each spectrum was recorded

from 4000 to 10,000 cm�1 with digitization interval of 8 cm�1. An
overlay of the spectra for each batch is given in Figure 2.

3.2. Software

The calculations were performed on a personal computer i7 880
processor with 6GB RAM running Windows 7 Professional
operating system using Matlab 7.9 (Mathworks, Inc., Natick,
MA). The PLS, MU, and FIR routines were obtained from or
modifications of functions in the PLS_Toolbox 2.1 (Eigenvector
Research, Inc., Manson, WA). The DOSC and Kennard–Stone
routines were implementations of well-established algorithms.

4. RESULTS AND DISCUSSION

4.1. The pharmaceutical tablet data

The optimal number of latent variables (LVs) was determined by
a multiple venetian blind cross-validation procedure for the
primary PLS model built on spectrometer #1. The model that
resulted in the minimum root-mean-squared error (RMSE) of

Figure 1. NIR spectra of the fifth pharmaceutical tablet measured with
the primary (spectrometer #1, blue) and the secondary (spectrometer
#2, green) instrument.

Figure 2. The spectra of three samples (one per batch) with chlorogenic
acid content around 3mg/mL.
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cross-validation (RMSECV) was selected. The RMSE calculation is
provided later [11]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
∑mi¼1 yi � ŷ ið Þ2

r
(5)

where, for cross-validation, yi refers to the reference assay
value for the ith sample and ŷ i denotes the predicted assay
value of the ith sample. In Figure 3, the RMSECV curves for the
raw, FIR-corrected, and OSR-corrected samples of spectrometer
#1 level off around 3, 3, and 1 LVs, respectively. The correspond-
ing regression vectors were then used to predict the assay values
of samples measured on spectrometer #2.

To quantitatively compare the performance of each transfer
approach, the RMSE of prediction (RMSEP) was calculated using
Eq. 5, where yi denotes the reference assay value for the ith
sample of #2 and ŷ i denotes the predicted value for the ith
sample of #2. The ratio of performance to interquartile distance
(RPIQ) calculated using Eq. 6 was also applied to evaluate the
transferability of each transfer method [28]:

RPIQ ¼ Q3� Q1
SEP

(6)

where Q1 is the value below which we find 25% of the samples,
Q3 is the value below which we find 75% of the samples, and
SEP is exactly the RMSEP.

The number of LVs was optimized automatically using the
F-statistic for each calibration model in the MU and FIR-corrected
process. The F-statistic is defined as follows [29]:

F ¼ RSSl�1= I � lð Þ
RSSl= I � l � 1ð Þ (7)

where RSS refers to the sum of squared residuals. I denotes the
number of objects in the training set, and l is the number
of LVs extracted. The extraction procedure will cease once the
F-statistic value is less than the F-critical value. The F-critical
can be identified by referring to the F distribution table at a
significance level of 0.05. On the contrary, the extraction proce-
dure will continue until a predefined number of LVs are reached.

The calibration model will generally produce better results
with a larger number of standardization samples incorporated

into the training set. However, given the analysis time and
associated costs, calibration transfer methods with fewer
standardization samples are practically preferred. As shown in
Figure 4, once the number of standardization samples included
in MU reaches 24, further increases in the number of standardi-
zation samples have little effect on the performance of the
resulting model. Therefore, the number of standardization
samples was set to 24 to facilitate comparison with the other
transfer approaches.
Table I lists the RMSEP values for the active pharmaceutical

ingredient mass in the tablet samples predicted by the model
updated via MU on spectra measured with spectrometer #2.
The updated model performed well at predicting the samples
retained in the calibration set and test set. However, it performs
worse on the validation set versus the raw PLS model. This
means that the new unmodeled variation might appear in the
validation set. Similar conclusions were drawn from the results
presented by RPIQ.
To account for instrument-wise variations, 24 samples

measured on both instruments were selected using the KS
algorithm and then used to calculate the OSC weights and
loadings [11]. The RMSECV curves for the OSC-corrected primary
spectra data reached minimums at 3 LVs and 1 orthogonal
component. Unfortunately, the results of the OSC transfer model
only showed improvement on the test data and not the other
two data sets.
The window size has a large effect on the performance of PDS

and needs to be carefully determined. As mentioned in the
literature [27], increasing the window size from 9 to 101 at
increments of 4 was investigated in this study. The number of
principal components (PCs) involved in the calculation of the
transformation matrix was set to 2. With rigorously tuned
window size (Ws), viz. PDS (Ws: 9), the transfer method was
found to perform slightly better than the MU on this particular
dataset.
Similar to PDS, the window size significantly influences the

performance of FIR. Thus, a window size scanning between 5
and 250 at intervals of 10 was examined. A transfer window of
175 points performed well in this application, which reflected

Figure 3. Calibration curves used for determining the PLS model
complexity on the raw (3 LVs), FIR-corrected (3 LVs), and OSR-corrected
(1 LV) spectra of the pharmaceutical tablet data.

Figure 4. The effect of the number of standardization samples on the
performance of the updated model. The RMSEP values were calculated
for the assay value of the active ingredient in the pharmaceutical tablet
samples (excluding the 24 standardization samples) predicted from
spectra recorded with the secondary instrument.
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the broad nature of the NIR spectra. This window was nearly half
of the total number of points in the dataset reduced for this
study. The results reported in Table I indicate that the RPIQ for
both PDS and FIR methods are consistently larger than that of
the raw PLS except the validation RPIQ for the FIR algorithm.
This means that FIR is more sensitive to the unmodeled
variations in the validation set versus PDS.
Although for both FIR and OSR, no identical samples need

to be measured on all instruments, the performance of OSR is
relatively better than that of FIR in terms of the RMSE and the
RPIQ for the validation set. Additionally, the prediction powers
of the OSR-corrected model on the three datasets are
consistently better than those of the raw PLS. The performance
of OSR on the test and validation data is even better than that
of the recalibrated PLS model. These results indicate that the
spectral variation between spectrometers might be eliminated
efficiently by OSR.
The results illustrate that the application of transfer methods

(i.e. PDS, OSC, FIR, MU, and OSR) on the calibration and test
spectra measured on spectrometer #2 reduces the prediction
errors to some extent. From the validation set, it can be
concluded that both the FIR and the MU methods are more
sensitive to unmodeled variances compared with the other
methods. After the spectra was corrected with OSR, the prediction
performance of the model built on the spectra of instrument #1 is
comparable to or even better than that of the model constructed
using the spectra measured on instrument #2. Therefore, the OSR
algorithm can correct for the difference between instruments.

4.2. The chlorogenic acid data

The saturated spectra regions 5149–5353cm�1 and 6958–7162cm�1

(Figure 2) have no contribution to the calibration model built on

the spectra from batch #1 and were eliminated from the full
spectra. Significant differences among spectra can be observed
because of the inevitable batch-wise variation, If the calibration
model built for batch #1 is directly applied to the spectra
collected on new batches, the resulting prediction errors will
be substantially large. To make the calibration model applicable,
more sophisticated calibration transfer is required. The widely
used PDS is unsuitable for this specific data because there are
no identical samples.

In Figure 5, the RMSECV curves for the raw, OSR-corrected, and
FIR-corrected samples display minimums at 4, 1, and 3 LVs,
respectively. The corresponding regression vectors were then
applied to the batches #2 and #3 samples. The predicted values
are separately plotted against their reference values in Figures 6
and 7. The RMSEP and RPIQ results for the OSR-transformation
and FIR-transformation samples are reported in Table II.
Amazingly, the FIR with an optimal window size of 205 failed
to improve the prediction performance on batches #2 and #3
samples. No significant improvement was achieved even upon
optimization of window. This suggests that removing the
wavelength-dependent scatter effect is insufficient to maintain
the calibration model for the particular data. Nevertheless,it
was found that OSR employing the first five samples was able
to incorporate sufficient new property information into the
resulting calibration model. That makes the transfer approach
more executable. The batch-wise variations in the DOSC-
pretreated spectra were corrected using a linear function, which
was obtained by regressing the VSS of the secondary batch on
that of the primary batch. Thus, there is no need to rebuild the
calibration model.

To illustrate the necessity of VSS, five samples from the
primary batch (#1) and five samples from each of the secondary
batch (i.e. batches #2 and #3) were selected and pooled to
construct the OSC model. With the batch-wise orthogonal
variance removed, the RMSECV curves for the primary samples
showed minimums at 2 LVs. From Table II, it can be concluded
that the transferability of the OSC method is limited for the
chlorogenic acid dataset.

The results of the OSR approach are shown in Figures 6 and 7
for each batch. To facilitate the comparison with OSR, an
updated PLS model was constructed using all the samples from
the primary batch (batch #1) and five KS-selected samples from

Table I. Summary of root-mean-squared error of prediction
and ratio of performance to interquartile distance values of
the pharmaceutical tablets after transfer of instrument #2
spectra

Method Calibration Test Validation

RMSEP RPIQ RMSEP RPIQ RMSEP RPIQ

PLSa 4.30 7.64 6.57 3.04 4.61 0.57
PDSa 3.85 8.54 5.67 3.52 4.01 0.66
FIRb 3.62 9.08 3.55 5.63 4.97 0.53
OSCb 5.07 6.48 5.67 3.52 4.85 0.54
MUb 4.17 7.88 4.65 4.30 4.84 0.55
OSRb 3.93 8.36 3.64 5.49 3.50 0.76
PLSc 3.82 8.61 4.96 4.03 4.33 0.6

RMSEP, root-mean-squared error of prediction; RPIQ, ratio of
performance to interquartile distance; PLS, partial least
squares; PDS, piecewise direct standardization; FIR, finite
impulse response; OSC, orthogonal signal correction; MU,
model updating; OSR, orthogonal space regression.
adenotes the PLS calibration model built using the raw spectra
of the calibration samples measured on instrument #1.
bsignifies the PLS model built on the corrected spectra of the
calibration set measured on instrument #1.
crefers to the calibration model constructed using the spectra
of the calibration set measured on instrument #2.

Figure 5. Calibration curves for raw (4 LVs), FIR-corrected (3 LVs), and
OSR-corrected (1 LV) spectra on the chlorogenic acid data.
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the secondary batch (batch #2 or #3). The updatedmodel was then
used to predict the remaining samples of the secondary batch. For
all the two batch-wise transfers (Figures 6 and 7), the MU
predictions approach the ideal calibration line. However, the MU
procedures complicate the mode transfer process because the
corresponding regression vectors needs to be re-estimated.

An examination of the results for OSR and MU in Table II
reveals that the prediction errors for these methods are similar.
This is not surprising because both methods incorporate samples

from the primary and secondary batches. In addition, it is
interesting to note that the number of LVs identified for both
data sets using OSR was one. This suggests that only the
variation pertinent to the property of interest was preserved [30].
Although significant improvement was acquired for the prediction
of #2 and #3 samples, the RMSEP values of MU and OSR were still
consistently larger than those of the recalculated PLS model. This
phenomenon can be attributed to the unaccounted variation in
the remaining samples. In brief, the success of the OSR on the

Figure 6. The prediction results for batch #2. The predicted values of the raw PLS model are represented by blue circle. The predicted values of the FIR
model, OSR model, MU model, and the recalculated PLS model are shown in subplots (a)–(d) using red pentagon, respectively.

Figure 7. The prediction results for batch #3. Details are shown in Figure 6.
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chlorogenic acid data fully demonstrates the ability to correct for
batch-wise variation.

5. CONCLUSIONS

In this work, OSR is proposed to perform calibration transfer in
cases where the standardization samples are difficult to measure
on a secondary setting. The chlorogenic acid results collected
from different batches demonstrate that the difference between
batches can be corrected through OSR, without requiring the use
of standardization samples. The performance of OSR was also
compared with other calibration transfer methods using
pharmaceutical tablet data. The results illustrate that the
variations between spectra of different instruments can be
successfully corrected by using OSR. In brief, OSR can be used
to transfer calibration models between primary situations and
secondary situations, whether the standardization samples are
provided or not.
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APPENDIX

An outline of the proposed OSR method is shown below.
Optionally transform, center, and scale the raw data to give

the matrices X (I× J), Y (I× K) for the primary set and Xt (m× J),
Yt (m× K) for the secondary set.

(1) Ŷ ¼ X X′X
� ��1

X′Y. Project Y onto X.
(2) Xo ¼ X� Ŷ Ŷ ′Ŷ

� ��1
Ŷ ′X. Deflate the pertinent part of X with

respect to Ŷ.

(3) Ta=PCA (Xo, no). Find nomajor PCs of the orthogonal part
of X, that is, Xo.

(4) W=X�Ta. Estimate the projection matrix with respect to
generalized inverse X�. where X� is calculated using a
PCR solution between X and Ta with the number of PCs
for the PCR solution equals the number of singular values
of X larger than a tolerance (tol).

(5) T=XW. Calculate the estimated scores.
(6) P=X′T(T′T)� 1. Calculate the loadings.
(7) Xcorr=X� TP′. Calculate the corrected matrix Xcorr.
(8) Xt′=Xt�XtWP′. Calculate the corrected matrix for the

secondary data set.
(9) vprimary = bias+ slope • vtransferred. Fit bias and slope between

the two virtual standardization spectra, using ordinary least
squares, where vprimary is calculated as the mean of DOSC-
corrected primary spectra divided by its corresponding
property values and vtransferred refers to the median (or
mean) of n DOSC-corrected secondary spectra divided by
its corresponding property values.

(10) xtrant = bias+ slope • xcorrt . Correct the differences between
instruments or batches.

Z. Lin et al.

wileyonlinelibrary.com/journal/cem Copyright © 2013 John Wiley & Sons, Ltd. J. Chemometrics (2013)




