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The use of near infrared spectroscopy was investigated as a process analytical technology to monitor the 
amino acids concentration profile during hydrolysis process of Cornu Bubali. A protocol was followed,
including outlier selection using relationship plot of residuals versus the leverage level, calibration mod- 
els using interval partial least squares and synergy interval partial least squar es (SiPLS). A strategy of four 
robust root mean squar e error of predictions (RMSEP) values have been developed to assess calibration 
models by means of the desirability index. Furthermore, multivariate quantification limits (MQL) values 
of the optimum model were determine d using two types of error. The SiPLS (3) models for L-proline, L-tyro-
sine, L-valine, L-phenylalanine and L-lysine provided excellent accuracies with RMSEP values of
0.0915 mg/mL, 0.1605 mg/mL, 0.0515 mg/mL, 0.0586 mg/mL and 0.0613 mg/mL, respectively. The MQL 
ranged from 90 ppm to 810 ppm, which confirmed that these models can be suitable for most 
applications.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

Cornu Bubali (CB), one of the major sources of biological agents 
and ethnodrugs, have been used in Traditional Chinese Medicine 
for several thousand years (Liu et al., 2010a ). And appeared in lots 
of famous and effective prescriptions, such as Qingkailing injection.
In the manufacturing process of Qingkailing injection, hydrolysis 
process plays a major role in the pretreatmen t of CB, and is thus ta- 
ken as our research object. Hydrolysi s process of CB is a complex 
chemical reaction process. This is mainly due to the decompositi on
of the peptides into desirable amino acids during hydrolysis pro- 
cess. Besides, many process parameters can influence the hydroly- 
sis, such as the temperature, alkaline conditions, speed of agitation,
etc. (Liu et al., 2010b ). Although these paramete rs can be well oper- 
ated, the type and content of amino acids could not be controlled 
so far, indicating that there are some uncertainties in the hydroly- 
sis process. Therefore, process monitoring will not only help 
improvin g the hydrolysis efficiency, but also might reduce hydro- 
lysis time which directly affects process productivity .

In recent years, near infrared (NIR) spectroscopy has been 
broadly applied as a quick assay for biological component and 
property analysis (He et al., 2012; Jacobi et al., 2012; Richard 
et al., 2011 ). There is an increasing trend in the use of NIR for pro- 
cess monitoring because its effectiveness for both qualitative and 
quantitat ive analysis in different fields (McClure, 2003 ). In this pa- 
per, the possibility of NIR to quantify the content of amino acids in
hydrolysi s process of CB was investigated. The NIR linear model is
mainly established based on partial least squares (PLS). Recently,
PLS model has been develope d including interval partial least 
squares (iPLS) and synergy interval partial least-squar es (SiPLS).
These PLS algorithms were previously assessed according to usual 
chemometr ic indicators : root mean square error of calibration 
(RMSEC), root mean square error of prediction (RMSEP), residual 
predictiv e deviation (RPD), determination coefficient (R2) and bias 
(Zou et al., 2007 ).

However , all of these previous works about indicators cannot be
fully used to assess a robust PLS algorithm (Wu et al., 2012a,b,
2013). This paper opens a new window for combinational 

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.biortech.2013.03.008&domain=pdf
http://dx.doi.org/10.1016/j.biortech.2013.03.008
mailto:shixinyuan01@163.com
mailto:yjqiao@263.net
http://dx.doi.org/10.1016/j.biortech.2013.03.008
http://www.sciencedirect.com/science/journal/09608524
http://www.elsevier.com/locate/biortech


Z. Wu et al. / Bioresource Technology 137 (2013) 394–399 395
assessment of NIR model using desirabili ty index (DI) and multi- 
variate quantification limits (MQL).

Several root RMSEP values were used to obtain DI, a concept 
from industrial quality control to produce a one-numbe r summary 
of a range of scores on different dimensions (Verboven et al., 2012 ).
This DI allows us to make the model selection procedure fully auto- 
matic, which will save time as it does not require any user inter- 
vention. In addition, this has become a point of interest and a
review on the MQL of multivari ate calibration methods has re- 
cently appeared (Alcala et al., 2008; Lorber and Kowalski, 1988;
Ostra et al., 2008 ). In this work, we performed a NIR assay for 
hydrolysis process of CB upon various times, and presente d several 
equations that can provide a quick and consistent prediction of
amino acids from large populations of samples using MQL (MQL
theory was introduced into the supportin g information ) and DI
assessment paramete rs.
2. Methods 

2.1. Materials 

Cornu Bubali was purchase d from Yabao Beizhongda Pharma- 
ceutical Co., Ltd. (Beijing, China), and deposited in the Key Labora- 
tory of TCM-inform ation Engineeri ng of State Administrati on of
Traditional Chinese Medicine (Nos. 1211081 , 1211082 and 
1211083). Other reagents and materials were shown in supportin g
information.

2.2. Hydrolysis process 

Ba(OH)2 (630 g) was put in a 2 L general single layer chemical 
reactor and dissolved with 1000 mL boiling water. Then CB
(125 g) was added into the reactor for hydrolysis. Stirring paddle 
kept running at a speed of 30 rpm during the whole hydrolysi s pro- 
cess. Along with the hydrolysis process with a period of 11.5 h,
sample of 1 mL was drawn by a pipette gun from the reactor at
the fixed position every 10 min. A total of 114 samples of three 
batches were prepared.

2.3. NIR equipment and software 

The NIR spectra were collected in transmission mode with an
Antaris Nicolet FT-NIR system (Thermo Fisher Scientific Inc.,
USA). Each spectrum was the result of 32 scans in the range be- 
tween 10,000 cm�1 and 4000 cm�1 at ambient temperature using 
8 cm�1 resolution, and was recorded as absorbance with air as ref- 
erence. Every sample was scanned three times, and the final spec- 
trum used for each sample was an average of three results. All NIR 
spectra were collected and archived using the Thermo Scientific
Result software.

2.4. Reference method 

2.4.1. Derivatiz ation of amino acids 
Prior to the derivatization reaction, standard solution (50 lL) or

hydrolysate of CB (50 lL) was mixed with 100 lL of 0.1 mol/L 
phenylisothi ocyanate (PTIC) solution and 100 lL of 0.1 mol/L tri- 
ethylamine (TEA) solution in an Eppendorf tube. The mixture solu- 
tion was agitated and left to stand at room temperat ure for 60 min.
Furthermore, hexane (400 lL) was added to the mixture solution 
and swirled for 60 s. The underlyin g solution was filtered through 
a Millipore membrane filter with an average pore diameter of
0.45 lm, and 10 lL filtrate was directly injected into the HPLC sys- 
tem for analysis. All HPLC determination s were conducted in
duplicate.
2.4.2. HPLC equipment and chromatography conditions 
An Agilent 1100 HPLC system (Agilent Technologie s, USA) with 

a vacuum degasser and an auto-sampler, a diode array detector 
(DAD) were used. Separation was performed on Dikma Diamonsil 
C18 column (250 mm � 4.6 mm with 5 lm particle size) at 45 �C.
The mobile phase was acetonitri le (A) and sodium acetate buffer 
solution (B), and the signal was monitore d at 254 nm. The flow rate 
was maintained at 1 mL/min. The eluted gradient was shown in
Table S1 (supporting information ).
2.5. Data preprocessin g and calibration development 

The Kennard–Stone (KS) algorithm was used to split the data set 
into calibration and prediction (76:28). Orthogonal signal correc- 
tion (OSC) is a suitable preprocessing method for PLS model of
mixtures without loss of predictio n capacity using spectrophot o-
metric method (Chalus et al., 2005 ). In this study, pretreatment 
of raw data were performed using OSC (SIMCA P + 11.5, Umetrics,
Sweden). In addition, to identify outlier samples, standardi zed 
residual based on the training estimate s is computed and com- 
pared to a cutoff value (Verboven et al., 2012 ). Finally, a new index 
by quartiles was added, which could better represent the spread of
the population. The quartiles are milestones in the population 
range (RMSEP0.25, RMSEP 0.5, RMSEP 0.75 and RMSEP 1.0). We propose 
to combine four RMSEP values to complete ly assess models using 
the largest DI.

Data analysis was performed by Unscrambler 9.7 software 
package (Camo Software AS, Norway) and Matlab version 7.0 
(MathWorks Inc., USA). Some of the algorithms were develope d
by Norgaard et al. which we downloaded from http://www.mod- 
els.kvl.dk/. Others were developed by ourselves, which can be rec- 
ognized as modifications of the algorithms described by Norgaard 
et al.
3. Results and discussion 

3.1. Quantitati ve analysis of 12 amino acids with HPLC–DAD

Representat ive chromatograms are shown in Fig. S1 (supporting
informat ion). All the target amino acids are baseline separated and 
can be determined accurately. Because the main purpose of this 
article is to establish an NIR method, more detailed description 
about the HPLC method validation is shown in the supporting
informat ion (Table S2–S4). The response linearity, precision 
(repeatability and intermediate precision), stability and accuracy 
(recovery studies) satisfied the demand of quantitative analysis.
3.2. NIR spectral features and outliers selection 

The raw spectra are shown in Fig. S2 (supporting informat ion).
It can be seen that two outlying observations are outliers. In addi- 
tion, taking the L-lysine (LYS) calibration model as representat ive,
when we perform PLS model with latent variables (LV) = 9 on the 
quantitat ive determination of LYS, we obtain the outlier maps in
Fig. S3 (supporting information). We notice on the right of the fig-
ure that observation 28 has a huge leverage level but a small abso- 
lute regression residual. This is an illustration of a good regression 
leverage point. However, sample 57 and sample 20 on the other 
hand have both a large residual and a relative small leverage level,
which indicates that they are outlying observations. Similar results 
were founded in the calibration models of other amino acids.
Therefore, sample 57 and sample 20 should be discarded in the cal- 
ibration set.

http://www.models.kvl.dk/
http://www.models.kvl.dk/
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Fig. 1. The number of intervals optimized according to RMSECV for different models (a) and spectral interval selected by SiPLS (b) on the quantitative determination of LYS.

Table 1
The optimum interval number of wavelength selection method for different amino acids.

Amino acids Spectral range a Spectral range b Spectral range c

Ala 7837–8377 7305–7571; 8115–8381 7305–7571; 7845–8111; 8115–8381
Asp 5978–6410 5978–6410; 9735–10000 5905–6263; 7837–8558
Glu 7837–8558 7837–9280 7575–7706; 7845–7976; 8115–8246
Gly 7837–8377 8655–8921; 9465–9731 8520–8786; 9465–9596
Leu 7837–8558 7837–8377 7837–8921
Phe 7837–8377 7683–8558 7845–8651
Pro 7837–8558 7837–8377 7845–8651
Ser 5978–6410 7405–8273 7305–7571; 7845–8111; 9735–10000
Trp 7837–8558 7251–7443; 9414–9607 5785–6024; 9048–9283; 9526–9762
Tyr 7837–8558 7683–8558 7845–8651
Val 7837–8558 7683–8558 7845–8651

a iPLS.
b SiPLS(2).
c SiPLS(3).
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3.3. Wavelength regions selection for calibration models 

Different wavelength selection methods were investiga ted. Tak- 
ing the calibration model of LYS as example, the spectrum was di- 
vided into 8 equidistant subinterv als in the applicati on of iPLS 
algorithm (as shown in Fig. 1a). In addition, the spectral combina- 
tion by SiPLS was optimum using different subinterval numbers.
The optimal SiPLS model was built with combinati on of subinterval 
number 9, 11 and 13 using 20 equidistant subintervals and 6 fac- 
tors, which corresponded to 7413–7625 cm�1, 7845–8057 cm�1

and 8277–8489 cm�1 in the spectrum (as shown in Fig. 1). The 
optimum waveleng th range for the calibration models of different 
amino acids were selected in the same way, the optimum model 
denoted as SiPLS (3) was built but the combination of selected inter- 
vals were different (as shown in Table 1).
3.4. Determina tion of the optimum LV numbers for calibration models 

The optimum number of LV is determined by the lowest 
RMSECV value. Usually, the first minimum value on the RMSECV 
plot is used to determine the optimum number of factors with 
the best prediction. Taking the LYS as example, Fig. S4 shows the 
effect of latent factors on RMSECV values for the SiPLS model (sup-
porting information). Fig. S4 shows the best factor number was 6.
The optimum LV numbers for other amino acids that were selected 
in the same way were not shown.
3.5. Developmen t and validation of calibration models 

To predict each amino acid concentration profile, the optimum 
SiPLS(3) model was develope d using the result of 6 repeated sam- 
pling. RMSEP 0.25, RMSEP 0.5, RMSEP 0.75 and RMSEP 1.0 were used to
obtain DI for assessing the robust NIR models. The DI value pro- 
vides a criterion for NIR models evaluation expresse d by geometric 
mean of the desirability coefficient (DC) values. DC is assigned a
unitless value between 0 and 1 by aid of a desirability function.

DIm ¼ P
n

n¼1
DCm;n ð1Þ

DCm;n ¼
minmðRMSEPm;nÞ

RMSEPm;n
ð2Þ

where the m index represents different models, the n index differ- 
ent RMSEP values.

Obviously , an equal importance is attached to each of the 
RMSEP values. The rank with the highest DI is the preferred one.
In the case, model constructed with the fifth sampling strategy 
achieve the maximum DI (0.909), and hence this model was used 
for LYS. The SiPLS (3) models of different amino acids were selected 
in the same way, and the optimum model was built (data did not 
show).

As a conseque nce, the correlation between spectral data and 
reference values combined to produce equations (Fig. 2). For pre- 
diction set, correlation coefficient of prediction (Rpred) was over 
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Fig. 2. Amino acid NIR predictions versus the reference method results.
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0.91 for all models (excluding Asp). Simultaneous ly, seven equa- 
tions displayed low RMSEP value, showing that accurate predictio n
of amino acid concentratio n profile is possible for hydrolysis pro- 
cess (Table 2). By comparis on, the equation s for L-proline (Pro), L-
tyrosine (Tyr), L-valine (Val), L-phenylalanine (Phe) and LYS dis- 
played higher R2

cv (above 0.95) and RPD values (above 3), as well 
as lower RMSEP and BIAS values for prediction data. In addition,
their correspond ing plots showed better correlations. Thus, these 
equation s were sufficiently accurate for applicati on.

3.6. NIR models evaluatio n using multivariate quantitation limits 

Table 3 shows that MQL result depende d on the range of con- 
centration and the type of errors (probability of type I error and 



Table 2
Statistic result of SiPLS mode l with different amino acids.

Amino acids Latent factors Rcal 
2 RMSEC RMSECV Rval 

2 RMSEP Bias RPD 

Ala 5 0.8812 0.2247 0.2526 0.8613 0.1992 �0.007 2.61 
Asp ND ND ND ND ND ND ND ND
Glu 7 0.9157 0.3643 0.4820 0.8553 0.3954 �0.019 2.41 
Gly 4 0.8664 0.1585 0.1752 0.8384 0.2275 �0.026 1.61 
Leu 7 0.9722 0.1120 0.1370 0.9597 0.1380 0.009 2.47 
Phe 7 0.9726 0.0374 0.0462 0.9600 0.0586 �0.002 3.60 
Pro 7 0.9800 0.0591 0.0766 0.9674 0.0915 �0.009 3.07 
Ser 8 0.9590 0.0507 0.0793 0.9030 0.1250 �0.012 3.36 
Trp 7 0.9653 0.1897 0.2447 0.9443 0.2581 �0.079 3.79 
Tyr 7 0.9703 0.1126 0.1422 0.9535 0.1605 0.008 3.01 
Val 7 0.9618 0.0428 0.0572 0.9332 0.0515 �0.005 3.25 
Lys 6 0.9612 0.0458 0.0517 0.9520 0.0673 �0.034 3.26 

ND, not detected.

Table 3
MQL result for error a (0.05) and error b (0.05) with differ ent amino acids.

Amino acids MQL 0.25
a MQL0.25

b MQL0.5
a MQL0.5

b MQL0.75
a MQL0.75

b MQL1.0
a MQL1.0

b

Glu 10.17 11.14 9.92 6.76 9.74 6.85 9.35 7.00 
Ser 0.41 3.18 0.29 0.47 0.27 0.94 0.26 0.73 
Gly 0.66 4.36 1.47 0.32 1.25 2.76 1.14 2.05 
Ala 1.64 0.72 1.27 0.58 1.26 2.05 2.43 1.64 
Pro 0.26 0.20 0.27 0.14 0.28 0.49 0.24 0.37 
Tyr 0.66 0.56 1.11 0.45 0.94 1.52 0.81 1.15 
Val 0.06 0.05 0.17 0.06 0.16 0.15 0.13 0.12 
Leu 0.68 2.00 3.50 0.97 0.78 1.03 0.76 0.85 
Phe 0.06 0.06 0.10 0.06 0.09 0.20 0.09 0.15 
Trp 1.30 2.58 3.13 1.58 2.80 3.92 2.41 2.98 
Lys 0.05 0.28 0.06 0.14 0.08 0.26 0.11 0.19 
Asp ND ND ND ND ND ND ND ND

ND, not detected.
a MQL for MSEC.
b MQL for MSEP.
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probability of type II error), and SiPLS model provided accuracy 
performanc e. For argininosuc cinic acid (Ala), glycine (Gly), L-tryp-
tophan (Trp) and L-glutamic acid (Glu), its MQL of SiPLS model 
had a large value range from 1000 ppm to 11000 ppm and were 
not satisfactory. For other amino acids, its MQL was low. The re- 
sults showed that liquids with eleven amino acids content could 
be reliably quantified by NIR (with proper quality prediction 
parameters).
4. Conclusions 

This research has shown that accurate quantitative predictions 
of amino acids concentratio n profile during hydrolysi s process of
CB are possible. The result shows the SiPLS (3) models of Pro, Tyr,
Val, Phe and Lys displayed higher R2

cv and RPD values, as well as
low RMSEP and BIAS values for prediction data. The minor amino 
acids constituents can be predicted accurately according to the re- 
sults of MQL. The accuracy of SiPLS (3) models suggest that NIR has 
potential in the rapid analysis of hydrolysis process for such CB
system as process and payment control.
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