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This paper presents a new strategy, target-oriented overall process optimization (TOPO), which can be used to
assure the consistent quality in herbal medicine products. The methodology of TOPO includes four parts, target
definition, data pretreatment, processmodeling and overall process optimization. The Bayesian approach is inte-
grated into the optimization step. The mechanism of TOPO involves optimizing multiple units of the production
system step by step, giving each unit optimal operating conditions consistent with the quality target. The effects
of TOPO were assessed using the descriptive statistics of the Bayesian posterior predictive distribution and the
final target achievement. The probability trajectory was adjusted to monitor and optimize the production pro-
cess. The proposed TOPO strategy was successfully applied to a seven-unit manufacturing process used to pro-
duce Lonicerae Japonicae extract. Results demonstrated that TOPO could keep the production process in line
with the predefined target and reduce the variability of the final products.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Herbal medicines and their derivatives have been used extensively
for thousands of years in many Asian countries, such as China, Japan
and Korea. For example, in China's National Essential Drug List (2012
Edition), 203 out of 520 total recommended drugs were herbal medi-
cine preparations. In Europe and North America, herbal medicines
have seen increasing use over the past few decades, largely in the
form of dietary supplements, functional foods or health products. It is
estimated that nearly 80% of the world's people still rely on herbal
medicines for health related benefits [1]. According to theWorld Health
Organization (WHO), the global market for herbal remedies and sup-
plements was about U.S. $83 billion in 2008, and it continues to grow
exponentially [2].

These trends lead to the imperative requirements of quality control
of herbal medicine products, because the quality of herbal products is
linked directly to their efficacy and safety [3]. Generally, quality control
of herbal products involves identification of the startingmaterial, details
of the manufacturing process, and standards for the finished product.
Currently, there are many technologies that can be used to control the
quality of these products, including chemical profilemethods, biological
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methods, on-line analytical tools, integrated evaluation approaches, etc.
[4–7]. However, these methods mainly refer to the analytical aspects of
quality control, and very few studies have evaluated the engineering
aspects.

The major difficulties and challenges in the quality control of herbal
medicines lie in the variability of the herbal material, the degree of
which depends on factors such as the location of growing, the time of
harvest, preprocessing methods and storage conditions [8–10]. Natural
variability may be introduced into the manufacturing process, causing
fluctuations between different batches [11,12]. Under these circum-
stances, conventional analytical techniques can identify the variations,
but they cannot maintain quality consistence across herbal products.
For this reason, there is an urgent need to address the problem of vari-
ability from the production point of view, because the quality of herbal
products is affected by the manufacturing processes to a large extent
[13].

Nowadays, many technological systems have been adapted from the
chemical and pharmaceutical industries, and used to modernize the
ways in which herbal products are processed. These techniques include
solvent extraction, macroporous resin column chromatography, high-
speed counter-current chromatography and various dosage preparation
methods [14–18]. The overallmanufacturing process of herbalmedicine
often consists of multiple processing units, which could also be called
multistage batch process [19]. Through the serial processing stages,
the desired quality is transformed from the starting materials to the
final products step by step. Downstream units are influenced by up-
stream units. All parameters of the manufacturing process more or
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less affect the final product [20]. Although the manufacture of herbal
products is now subjected to the Good Manufacturing Practice (GMP)
standards, there is a lack of strategies to coordinate the relationships
between different production units and to optimize the process param-
eters, in order to assure consistent product quality. Nevertheless, devel-
oping such strategies is challenging, because of the complex kinetics
and thermodynamics of these processes, and of theunclearmechanisms
by which active ingredients are transferred.

In order to tackle the abovementioned difficulties, systematic meth-
odologies including multistage batch process modeling, monitoring, con-
trol and optimization, are needed to effectively control and improve the
product quality during the multistage manufacturing process [21–23].
And some new concepts, e.g. plant wide optimization (PWO), could also
be applied to facilitate optimal operation conditions consistent with the
quality objectives of the large scale production system [24–26]. Based
on these thoughts, a new strategy named target-oriented overall process
optimization (TOPO) is brought forward to address the problem of vari-
ability in the concentrations of active ingredients in herbal products.
The rest part of this article is organized as follows. First, a brief introduc-
tion is made about the mathematical foundations of TOPO. Then, techni-
cal details of the TOPO are illustrated. The method of expanding PLS
modeling proposed by A. Pomerantsev et al. [27] will be employed in
the TOPO strategy together with the Bayesian optimization technique.
After that, effects of the proposed TOPO strategy were tested in a seven-
unit manufacturing process used to produce the Lonicerae Japonicae
extract. Finally, a summary of this paper is provided.

2. Overview of TOPO

The target-oriented overall process optimization (TOPO) strategy
proposed in this study integrates the expanding PLS regression method
and the Bayesian approach together. Theword “expanding” heremeans
a series of PLSmodels are built at the end of each stage, where the qual-
ity variables can also be predicted [27,28]. For a multistagemanufactur-
ing system with many process variables, it is time consuming and even
impossible to optimize all combinations of variables. Therefore, with the
help of established series of PLS models, optimization operation is
designed to start from the second stage to the last stage. For a certain
stage to be optimized, all the historical data, as well as the measure-
ments from its previous stages are utilized. The goal of TOPO is to con-
sistently provide optimal assurance for the product quality meeting
defined specifications.

2.1. Mathematical fundamentals of TOPO

2.1.1. Partial least square regression
Partial least square (PLS) regression is a popular chemometric tool

and is widely applied in industrial research, development and produc-
tion. In the presence of historical production data which are often
none-designed and not orthogonal, or contain noisy and collinear pro-
cess variables, PLS method deserves the property to grasp hidden rela-
tionships between process variables and quality variables.

Themain purpose of PLS regression is to build a linearmodel relating
the independent data X (size m × n, m is the number of observations
and n is number of variables) with the response data Y (size m × q, q
is the number of responses):

Y ¼ XBþ E ð1Þ

where B (size n × q) is the matrix of regression coefficients; E is a noise
term and has the same dimension with Y. The basic assumption of PLS
method is that there is a small number of latent variables (LVs) [29],
which are linear combination of the original X variables, and can cap-
ture most of information in the calibration data for predicting the
responses. These latent variables are also known as X-scores, by which
the PLS model can be written as follows:

Y ¼ TV þ E ð2Þ

where T (size m × p, and p corresponds to the number of latent vari-
ables) is the matrix of X-scores; V (size p × q) is the matrix of inner
regression coefficients for T. PLS method produces the T through a
weighting matrix W and loading matrix P:

T ¼ XW PTW
� �−1 ð3Þ

whereW is a n × pmatrix and is computed tomaximize the covariance
between the scores and responses. P is a n × pmatrix. Two popular al-
gorithms can be employed to compute the scores matrix, i.e. the NIPALS
algorithm and SIMPLS algorithm [30,31]. Once T is obtained, the inner
regression coefficients V in Eq. (2) is estimated by regressing Y on T
via ordinary least square regression (OLS) procedures:

bV ¼ TTT
� �−1

TTY: ð4Þ

Given a new sample vector x (size n × 1), the x is firstly projected
onto the latent space, generating a score vector t (size p × 1):

t ¼ WTP
� �−1

WTx ð5Þ

Then, the corresponding response by could be predicted according to
Eq. (2):

by ¼ tTbV : ð6Þ

Prediction can also be made directly from original variables of the
sample x according to Eq. (1), where B is estimated as follows:

bB ¼ W PTW
� �−1

V: ð7Þ

The number of latent variables determines the complexity of the
model. Therefore, the test set validation method and cross validation
method (e.g. leave one out, LOO) are usually introduced to help select
the optimal number of LVs and to test the predictive ability during the
model construction [32]. Some chemometric indicators, such as root
mean square error of calibration (RMSEC), root mean square error of
cross validation (RMSECV), root mean square error of prediction
(RMSEP), ratio of performance to deviation (RPD), predicted residual
error sum square (PRESS) and bias, are often used to assess the perfor-
mance of the establishedmodel [33,34]. For example, the PRESS index is
calculated as:

PRESS ¼
Xm
i¼1

byi−yi
� �2

: ð8Þ

The PRESS value shows the sum of squares of deviation between the
predicted and the true property of the validation sample i during cross-
validation, and it decreases as the LVs increase. When the PRESS value
tends to be constant, the optimum number of LVs is obtained.

2.1.2. Bayesian approach
Under the framework of Bayes' theorem, the Bayesian inference

combines the prior knowledge about the model parameters with infor-
mation from measured data [35]. In process optimization, the Bayesian
approach provides a natural way of making inference on future re-
sponse ey from its posterior predictive distribution. Using the classical
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(i.e. Jeffreys) non-informative prior on B and E of the linear model in
Eq. (1), namely:

p B;Eð Þ∝p Bð Þp Eð Þ ð9Þ

where p(B) ∝ constant, and p(E) ∝ |E|− (q + 1)/2, the prior density forB
and E must be of the form:

p B;Eð Þ∝jEj− qþ1ð Þ=2
: ð10Þ

The posterior predictive density forey can be obtained by the Student
t distribution with v degree of freedom (df) [36]:

p eyjX;Y; xð Þ∝ 1þ 1
v

ey−xTbB� �T
H ey−xTbB� �� �vþq

2 ð11Þ

where v ¼ m−p−qþ 1 ð12Þ

H ¼ vS−1

1þ xT XTX
� �−1x

; ð13Þ

S ¼ Y−XbB� �T
Y−XbB� �

; ð14Þ

bB is estimated by Eq. (7). It can be seen that the posterior predictive
distribution of response accounts for the uncertainty from both the un-
known parameters B and the unknown error E of the model. However,
the prerequisite for estimating the posterior density ofey is that there is a
small amount of collinearity among different variables in the X data.
Otherwise, the inverse of XTX may not exist [37]. If this prerequisite is
not satisfied, the collinear variables should be carefully excluded from
analysis or combined into a single indexbeforehand. Somemore sophis-
ticated technique (e.g. the Bayesian latent factor regression [38]) may
be considered, but this is beyond the scope of this article.

Monte Carlo simulationmethod could be used to easily approximate
the posterior prediction distribution of ey. Firstly, a vector u (size 1 × q)
is sampled from a normal distribution N(0, H−1), and an independent
random number c is simulated from the chi-square distribution with
df v. Then, the estimation for ey is calculated from:

ey ¼ u
ffiffiffi
v
c

r
þ xTbB: ð15Þ

After a large number of u and c are simulated, the posterior predic-
tion distribution of ey can be acquired and used for inference.

2.2. Implementation procedures of TOPO

With the basic mathematical methods described earlier, 4 major
phases and 10 steps are designed and included in the proposed ap-
proach, as shown in Fig. 1. The technical details for each phase and
step are illustrated as follows:

Phase I Target definition
Step 1 The optimization target is defined as quality specifica-

tions, and is denoted as O. The specifications for each
response should include the lower and upper limits,
or at least one of them. For the jth stage (or unit) to
be optimized, the optimization problem can be ex-
pressed as:

xjopt ¼ argmaxP eyj∈OjData;xjcon

� �

xjcon∈L j ð17Þ

where Data represents all the available information. Lj
is the acceptable range of controlled process variables
in the jth stage. P(⋅) is the Bayesian posterior predic-
tive probability of eyj meeting the target. The objective
of optimization is to find xjopt with maximum P(⋅).

Phase II Data pretreatment
Step 2 Assume that there is a collection of historical batch

production data, and the number of process parame-
ters does not change over time. Then, the process var-
iables are organized into a data matrix X, while the
quality variables are organized to form adatamatrixY.

Step 3 All data are scaled properly in order to eliminate di-
mension differences.

Step 4 The data arrangement is an important step before
process modeling. According to the expanding PLS
modeling technique, the whole process is supposed
to involve k production stages. Each stage can be rep-
resented by a data block Xj (1 ≤ j ≤ k). Then, the
whole data matrix X is composed by a series of data
blocks from X1 to Xk. At the jth stage, all the previous
data blocksX1 toXj − 1, together withXj, are arranged
to form the joint data block X(j).

X jð Þ ¼ X1;X2;…;Xj

h i
: ð18Þ

The k joint data blocks will be used in the modeling
step.

Phase III Process modeling
Step 5 Select the best number of latent factors by LOO cross

validation (or K-fold cross validation), as well as
chemometric indicators.

Step 6 By relating the joint data block X(j) and the responses
Y, the process PLS model XYj at jth stage can be
established as:

XYj : Y ¼ X jð ÞBj þ Ej: ð19Þ

Alongwith enlargement of the joint data blocks, k PLS
models are built (i.e. expanding PLS modeling).

Step 7 The parameters used in the jth process PLS model, i.e.
Bj, are stored for the following computation.

Phase IV Process optimization
Step 8 For a new batch process, the process variables are de-

noted as vectors x. Suppose that the jth stage of a
new batch is going to be optimized. The process vari-
ables xj are firstly divided into the observed ones
xjobs and controlled ones xjcon. The observed variables
could be read, but not be adjusted. Only the controlled
variables can be manipulated and optimized. There-
fore, the observed variables together with variables
x(j − 1) from previous (j − 1) stages are combined
into the fixed variables xjfixed. According to the optimi-
zation range and control precision of the controlled
variables of the jth stage, an exhaustive method is
conducted to form a grid of controlled variables (i.e.
Lj in Eq. (17)), the row number of which is denoted
as N. Then, each row in Lj is combined with xjfixed,
forming the matrix Dj for exploration:

Dj ¼ xjfixed⊗g; L j

h i
¼

xjfixed
xjfixed
⋮

xjcon−1
xjcon−2
⋮

xjfixed xjcon−N

0
BB@

1
CCA ð20Þ

where⊗ is Kronecker product operator; g isN × 1 col-
umn matrix with all elements that equal one.

Step 9 By applying the approach introduced in Section 2.1.2,
the Bayesian posterior predictive distribution for the



Fig. 1. Implementation procedures of TOPO.
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row vector in Dj can be approximated. In this paper,
the number of Monte Carlo simulation was set to
10,000. Then, P(⋅) for each row in Dj is calculated from
proportion. The best setup xjopt corresponds to xjcon
with the maximum probability.

Step 10 Based on the series of expanding PLS models, steps 8
and 9 are repeated from the second stage to the end
stage.
Table 1
Properties of parameters at every stage of the production process.

Stage Unit operation Process parameters

Range Controlled Observed

1 Water extraction x1–x5 None x1–x5
2 Concentration x6 x6 None
3 75% alcohol precipitation x7–x13 x7, x8, x11, x13 x9, x10, x12
4 Alcohol recovery x14–x16 x14, x15 x16
5 85% alcohol precipitation x17–x23 x17, x18, x21, x23 x19, x20, x22
6 Alcohol recovery x24–x26 x24, x25 x26
7 Purification x27–x28 x27, x28 None
3. Real world data

3.1. Process description

The overall production process of Lonicerae Japonicae extract used as
an example in this paper belongs to the pharmaceutical manufacturing
system of Qingkailing Injection, as specified in Chinese Pharmacopoeia
(2010 Edition, Volume I). The whole process consists of seven key unit
operations (X1, X2, …, X7), such as water extraction, concentration,
alcohol precipitation, and alcohol recovery. It is also a typical herbal
medicine production process. During the seven stages of production,
the Chlorogenic acid in the starting material (Lonicerae Japonicae Flos)
is gradually separated and transferred into the Lonicerae Japonicae liquid
extract which is stored and used in the subsequent dosage preparation
process.
Generally, 28 process parameters (x1, x2,…, x28) and onequality attri-
bute (y) which represents the concentration of Chlorogenic acid deter-
mined by HPLC, are taken into consideration in the overall production
process. Every variable has a specificmeaning, for example, x1 represents
the quality of inputmaterial. Each unit has a different number of process
parameters, as shown in Table 1. Some units have two types of process
variables, the controlled and the observed.

Fig. 2 shows an abstract illustration of the overall process. Each stage
is denoted in the form of a rectangle. The length of each rectangle is pro-
portional to the number of process variables, which is given in themid-
dle of it. The process variable data block can be expanded as the process
continues, forming a series of joint data blocks (X(1), X(2), …, X(7)),



Fig. 2. Graphical description of the overall production process of Lonicerae Japonicae
extract.

148 B. Xu et al. / Chemometrics and Intelligent Laboratory Systems 128 (2013) 144–152
according to Step 4 of TOPO. At the end of any stage, the process
engineer may assess about the finished process operations and decide
whether to take any corrective action for the next set of operation. In
this sense, TOPO could be used to facilitate reasonable solutions.

3.2. Target product quality profile

The U.S. Food and Drug Administration (FDA) published a set of
guidelines describing the basic components of the target product profile
(TPP) in 2007 [39]. In general, TPP covers the overall clinical safety and
efficacy intent of drug development [40]. TPP is qualitative and implicit.
Onlywhen TPP is translated into target product quality profile (TPQP), a
quantitative surrogate for TPP, can it be used to optimize a manufactur-
ing process [41].

In our case, Chlorogenic acid has already been proved to be one of
the most effective components in both the herb, Lonicerae Japonicae
Flos, and the Qingkailing Injection product [42]. In practice, the range
of concentrations of Chlorogenic acid has shown to be the most im-
portant TPQP for the Lonicerae Japonicae intermediate. A histogram
showing Chlorogenic acid concentrations varied between 0.30 and
5.97 mg·mL−1 (properly scaled to the range between −1 and 1) is
shown in Fig. 3. It is based on normal historical production data, includ-
ing 173 batch records from 2008 to 2011. Although the concentration
values are all within the predefined specifications, the increasingly
stringent regulatory requirements set by quality control standards for
Chinese medicine injections show that the variability of this concentra-
tionmust be reduced still further. For this reason, a higher level of TPQP,
i.e. a narrower range of Chlorogenic acid concentrations, is needed from
the quality improvement point of view.

In order to set up the reasonable lower and upper limits (i.e. O in
Step 1 of TOPO) for the control of Chlorogenic acid, a moving window
method was applied. The window size represents the expected varia-
tion coverage for the concentration of Chlorogenic acid, and was set
Fig. 3. Target product quality profile (TPQP).
up to 1.0 mg·mL−1 in this study. Then, the window was moved from
0 to 6 mg·mL−1 at the step of 0.1 mg·mL−1. During the movement of
the window, the number of historical batch records hit at the window
was saved. Finally, the window located between 2.5 and 3.5 mg·mL−1

with the maximum number of batch records (i.e. 61) was selected as
the target optimization interval (i.e. black dashed lines properly scaled
to−0.2240 and 0.1287 in Fig. 3). In this way, the target response inter-
val is narrow enough to control the variability, while representing
enough normal operating conditions.

4. Results and discussion

4.1. Computer implementation

All programs involved in this paperwere implemented usingMATLAB
7.0 platform (MathWorks Inc., U.S.). Process PLS regression models were
developed using PLS_Toolbox 2.1 (Eigenvector Research Inc., U.S.). Multi-
variate normal random numbers and Chi-square random numbers used
in the Monte Carlo simulation were generated using the corresponding
distribution functions from the MATLAB Statistics Toolbox.

4.2. Pretreatment of data

According to Steps 2, 3 and 4 of TOPO, the process variables X and
quality variable y of the collected 173 batch production data, were
coded to the range between −1 and 1. Then, 115 batch data were se-
lected as the calibration set using the Kennard and Stone algorithm.
The remaining 58 batch data were treated as the validation set and
the optimization object (i.e. the control set). The acceptable minimum
and maximum bounds for the controlled process variables were
established according to both the historical records and the process en-
gineers' advice (Table 2).

To confirm whether the available data satisfied the prerequisites
proposed in Section 2.1.2, the variance inflation factor (VIF) was used
to measure the collinearity of variables in the joint data block X(j)

formed at different stages of the process (Table 3). As suggested in pre-
vious works, the collinearity was considered weak if the VIF was less
than 10 [43]. In the present case, almost all the VIF values were within
the suggested limit, except for one variable with VIF of 10.25 in X(7).
However, this did not influence the accuracy of the calculations that
took place during the last stage optimization.

4.3. Calibration and validation of the process PLS models

During the Phase 3 of TOPO, seven PLSmodelswere developed using
theNIPALS algorithm, relating the process variables and the quality var-
iable. Each calibration model has an optimum LV number. Not enough
information would be obtained if LVs are too small. This phenomenon
Table 2
Meaning and optimization range of controlled parameters.

Parameter Name Range

x6 Relative density (room temperature) −1–1
x7 Temperature of liquid drug extract −0.3913–0.7681
x8 Time of alcohol adding −1–0.8433
x11 Volume of alcohol added −0.9022–0.9308
x13 Time of refrigeration −0.9914–0.2499
x14 Vacuum degree −1–1
x15 Temperature of ethanol recovery −0.6667–0.5833
x17 Temperature of liquid drug extract −0.8182–1
x18 Time of alcohol adding −0.7143–1
x21 Volume of alcohol added −0.8821–0.9047
x23 Time of refrigeration −0.9789–0.8619
x24 Vacuum degree −1–1
x25 Temperature of ethanol recovery −1–1
x27 Time of agitation −0.9322–0.7627
x28 Time of refrigeration −0.9816–0.9450

image of Fig.�2
image of Fig.�3


Fig. 4. Selection of the optimal number of the latent variables for PLS model XY7.

Table 3
Variance inflation factor (VIF) calculated for the variables in the joint data block at different
stages.

Stage Data block Variance inflation factor

Minimum Maximum Mean

1 X(1) 1.05 1.67 1.37
2 X(2) 1.07 1.71 1.35
3 X(3) 1.10 4.98 2.22
4 X(4) 1.13 5.67 2.24
5 X(5) 1.18 9.86 3.45
6 X(6) 1.24 10.00 3.47
7 X(7) 1.26 10.25 3.40

Table 4
Performance of the process PLS models established during different stages.

Stage LVs Calibration Validation

rcal RMSEC RMSECV BIAScal rval RMSEP RPD BIASval

1 5 0.5258 0.3501 0.3669 0.2866 0.6333 0.2905 1.23 0.2293
2 6 0.5357 0.3475 0.3709 0.2826 0.6381 0.2893 1.23 0.2317
3 7 0.7477 0.2718 0.3179 0.2208 0.7865 0.2242 1.59 0.1699
4 7 0.7623 0.2649 0.3186 0.2098 0.7853 0.2272 1.57 0.1682
5 8 0.8003 0.2454 0.3177 0.1994 0.7718 0.2294 1.56 0.1799
6 8 0.8156 0.2368 0.3210 0.1852 0.7762 0.2265 1.58 0.1765
7 8 0.8393 0.2225 0.3132 0.1779 0.7680 0.2302 1.55 0.1785
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is called “under-fitting” of a model. And an excessive inclusion of LVs
may increase the accuracy of calibration but decrease the model
predictivity, which indicates that the model is misrepresented or
“over-fitted”. In this paper, the number of latent factors was optimized
using both the LOO cross-validation and an external validation set.
Without loss of generality, taking model XY7 established during the
last stage for example, the PRESS, RMSEC, and RMSEP values stabilized
at 8 latent factors, which were chosen as the optimum LVs (as shown
in Fig. 4). The correlation diagrams under these 8 factors are shown in
Fig. 5. The r values are 0.8393 and 0.7680 for the calibration set and
validation set, respectively.

After the calibrationmodelswere established, their predictive ability
was verified using the validation set. The results are listed in Table 4. It
could be found that the performance of these PLSmodels was improved
stage by stage. This was proved by the decreasing RMSEC, RMSEP, and
Fig. 5. Correlation between the reference and prediction values u
RMSECV indexes, and by the increasing r values. One rational explana-
tion for these phenomena is that the useful information carried in the
process variables is gradually added into process PLS models. It should
be noted, however, that all the r values are not very high, ranging be-
tween about 0.52 and 0.84. This could be due to several reasons. Firstly,
some process variables (e.g. the refrigeration time represented by x13
and x23) were recorded manually in our case. Hence, the accuracy of
these variables could not be adequately assured. Secondly, somemean-
ingful process parameters, like the time and speed of agitation in the al-
cohol precipitation stage, were unfortunately not preserved. Thirdly,
high-dimensional interactions between different process variables, as
well as interactions between different stages, were not fully taken into
considerationwhen performing the PLSmodeling. Despite these limita-
tions, the established PLS models were able to capture the primary
pattern of themultistage batch process, and could be used for optimiza-
tion. Moreover, the Bayesian approach introduced could assure the rea-
sonable inference, based on even low fidelity models.

The RPD value is also a sensitive index closely related to the model
predictive performance. According to previous works, PLS model with
a RPD value larger than 1.5 may be acceptable [44]. As shown in
Table 4, RPD values for the first and second stage models were both
less than 1.5, which may have been because of the limited number of
process variables included in the two stages. However, after Stage 3,
the RPD values all exceeded 1.5 and did not vary toomuch. For this rea-
son, Stage 3was considered an important operation unit with respect to
the quality variable. This is closely consistent with results observed in
real production situations, in which alcohol precipitation plays a major
role in the process of preparing Lonicerae Japonicae extract [11].
4.4. Optimization for a single batch

Every batch in the control set was investigated and optimized
according to procedures in Phase 4 of TOPO. For a single batch, the opti-
mization was simulated to adjust the values of the controlled variables
nder PLS model XY7. (a) Calibration set. (b) Validation set.

image of Fig.�4
image of Fig.�5


Table 5
Bayesian predictive distribution during the course of optimization for Batch 49.

Stage Mean Median Std. deviation IQR

1 −0.2426 −0.2427 0.3711 0.4998
2 −0.1196 −0.1195 0.3846 0.5182
3 −0.0066 −0.0044 0.3303 0.4459
4 −0.0831 −0.0844 0.3256 0.4356
5 −0.0554 −0.0526 0.3206 0.4245
6 −0.0401 −0.0418 0.3288 0.4327
7 −0.0152 −0.0108 0.3071 0.4100

Fig. 6. Results of the overall process optimization for 5 batches selected from the validation s
variables.
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from the second stage to the last stage, and the values of the observed
variables were kept unchanged. All the possible combinations of the
controlled variables during a certain stage were employed to form Lj
in Eqs. (17) and (20). For example, in the fifth stage, Lj was generated
from a grid of 9 × 4 × 6 × 62 data points.

Taking Batch 49 in the control set for example, the underlying
optimization course was revealed by using the descriptive statistics of
the Bayesian posterior prediction distribution at every stage, such as
mean, median, standard deviation and interquartile range (IQR). IQR
et. Xori indicates the original process variables and Xopt indicates the optimized process

image of Fig.�6


Fig. 8. Target achievement when TOPO was applied to the control set.
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was considered a robust estimate for the spread of the data. Details of
the results are shown in Table 5. As the optimization progressed, the
standard deviation and IQR indexes tended to decrease. At the same
time, the mean and the median values approached the center of the
predefined target response interval (i.e. 0.0476) piece by piece, indicat-
ing that TOPO methods performed well.

4.5. Optimization for the control set

The efficiency of TOPOmethod was investigated on all 58 batches of
the control set. Five distinctive batches (Nos. 2, 6, 21, 49 and 56), which
had different starting materials and different final quality results were
selected for analysis. As shown in Fig. 6, the values of the process vari-
ables before and after the optimization are compared. Within the ac-
ceptable parameter space, there was always a way of achieving the
target response interval. Given the original and optimized process vari-
ables, the mean of Bayesian prediction distribution by original process
variables gradually approached the y reference values, and the mean
predicted by the optimized variable always lay around the center of
the target interval. The variability of the input raw material could be
mitigated during the multi-stage optimization.

The probability trajectory can be visualized by lining up the Bayesian
posterior probability calculated at each stage. The probability trajectories
of the above five selected batches under the original process variables
are shown in Fig. 7a. These trajectories evolved without a definitive di-
rection. As a result, Batches 6, 49, and 56 eventually failed to meet the
target, and the reference value of Batch 2 stopped at the upper limit of
the target interval.

The corresponding probability trajectories after applying TOPO are
shown in Fig. 7b. The five trajectories all tended to increase, peaking
at the final stage. After the overall process optimization, the optimized
quality responses of the 58 batches in the control set were predicted
using the optimized process variables based on the PLS model XY7.
The histograms for both the reference and optimized quality values
were overlain to indicate the target achievement (as shown in Fig. 8).
It became clear that the optimized quality valueswere all locatedwithin
the target interval. These results demonstrated that the goal proposed in
Section 2, that TOPO keeps the production process in line with the
predefined target, was achieved.

Besides, a simple univariate statistical process control (SPC) chart
was created using the 58 TOPO probability values ranging from 0.3890
to 0.4917 at the last stage. The lower limit of the SPC chart, which
equaled the mean minus three times the standard deviation, was set
as the warning limit (i.e. 0.3803 represented as red lines in Fig. 7).
Then the process engineer could monitor the production process. For
example, the inferior performance of Batch 2, shown in Fig. 7a, may be
attributed to improper operation during Stage 7. Assuming that TOPO
Fig. 7. Probability trajectories. (a)Without TOPO. (b)With TOPO. The green line segment in (a) s
was introduced during the last stage, this unsatisfactory operation
may have been prevented by maintaining the probability above the
warning limit (shown as a green line segment in Fig. 7a). In this way,
TOPO helps the process engineer understand and optimize the produc-
tion process at a high level.

5. Conclusions

In this paper, a new strategy, target-oriented overall process optimi-
zation (TOPO) is brought forward. This system allows the user to con-
tinually monitor and optimize manufacturing processes to ensure
consistent quality across herbal products. The feasibility of the proposed
TOPO strategy was validated by applying it to the production of
Lonicerae Japonicae extract. Results indicated that the problem of vari-
ability in the concentration of active ingredients in herbal products
could be solved from an overall production process point of view
using TOPO.

In general, TOPO explores the full potential of legacy batch produc-
tion data with respect to understanding and optimizing the herbal pro-
duction process. It can help process engineers monitor, control, and
optimize the process ofmanufacturing of herbalmedicine and ultimate-
ly reduce the variability in final products. For herbal prescriptions pro-
duced under the framework of ICH Q10 guidance (i.e. Pharmaceutical
Quality System) [45], TOPO can serve for the process performance and
product quality monitoring system, as well as the corrective action
and preventative action (CAPA) system.

Batch process optimization is a long-standing problem [46], but
overall process optimization is a new area in research of the field.
With respect to reaching global optimization targets, it will be greatly
hows that the inferior performance of Batch 2 during Stage 7 could be prevented via TOPO.

image of Fig.�7
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helpful to view the batch production process as a whole, rather than as
discrete steps. TOPO is a new strategy for herbal medicine production
and there is still room for improvement. Future studies may explore
the multi-objective, high-dimensional, nonlinear and dynamic charac-
teristics of themultistage batchprocess, and the economic ramifications
of these variations.
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