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a  b  s  t  r  a  c  t

A  methodology  is  proposed  to  estimate  the  multivariate  detection  limits  (MDL)  of  on-line  near-infrared
(NIR)  model  in  Chinese  Herbal  Medicines  (CHM)  system.  In  this  paper,  Lonicera  japonica  was  used  as  an
example,  and  its extraction  process  was  monitored  by  on-line  NIR spectroscopy.  Spectra  of  on-line  NIR
could  be  collected  by two  fiber  optic  probes  designed  to transmit  NIR  radiation  by a  2 mm-flange.  High
performance  liquid  chromatography  (HPLC)  was  used  as  a  reference  method  to  determine  the content  of
chlorogenic  acid  in  the  extract  solution.  Multivariate  calibration  models  were  carried  out  including  partial
least squares  regression  (PLS)  and  interval  partial  least-squares  (iPLS).  The  result  showed  improvement
of  model  performance:  compared  with  PLS  model,  the  root  mean  square  errors  of prediction  (RMSEP)

2

ultivariate detection limits
n-line
onicera japonica

of iPLS  model  decreased  from  0.111  mg  to 0.068  mg,  and the  R parameter  increased  from  0.9434  to
0.9801.  Furthermore,  MDL  values  were  determined  by a multivariate  method  using the  type  of errors
and  concentration  ranges.  The  MDL  of  iPLS  model  was  about  14  ppm,  which  confirmed  that  on-line
NIR  spectroscopy  had the  ability  to detect  trace  amounts  of  chlorogenic  acid  in  L.  japonica.  As  a result,
the  application  of  on-line  NIR  spectroscopy  for monitoring  extraction  process  in  CHM  could  be very

.
encouraging  and  reliable

. Introduction

With the issuing of the Process Analytical Technology (PAT)
uidance for industry in September 2004, the FDA is encouraging
harmaceutical manufacturers to adopt new technologies during
rug manufacturing process, mainly for timely assessment of crit-

cal products and their production process attributes [1]. In recent
ears, near-infrared (NIR) has been regarded as an excellent PAT
ool for process monitoring in Chinese herbal medicine (CHM)
2–6]. It could provide rapid, non-destructive information collec-
ion with minimal or no sample preparation, and has been widely
pplied in the quantitative and qualitative analysis of CHM.

However, like each technique, NIR also has drawbacks. When
sed in CHM with complex chemical composition, overlapping
bsorption bands and low molar absorbance of signals may  occur,

eading to high detection limit and low sensitivity [7–10]. Admit-
edly, with the improvement upon the precision and sensitivity of
quipment, it is now able for NIR spectroscopy to detect substance

∗ Corresponding authors at: Beijing University of Chinese Medicine, Beijing
00102, China. Tel.: +86 10 84738621; fax: +86 10 84738661.

E-mail addresses: shixinyuan01@163.com (X. Shi), yjqiao@263.net (Y. Qiao).

731-7085/$ – see front matter ©  2013 Published by Elsevier B.V.
ttp://dx.doi.org/10.1016/j.jpba.2012.12.026
© 2013 Published by Elsevier B.V.

in low concentrations. However, it should be noted that the amount
of active pharmaceutical ingredients (API) in most CHM is below
0.1%. Thus, an analysis method capable of determining the multi-
variate detection limits (MDL) will be beneficial for NIR applications
in CHM.

The limit of detection (LOD) is one of the most significant val-
ues to assess an analytical method. A single equation is used to
calculate LOD for a classical univariate calibration [11]. However,
this LOD estimator is not generally accepted for multivariate cali-
bration methods [12]. Among the proposals made so far, none has
received general approval. This has become a point of interest and a
review on the MDL  of multivariate calibration methods has recently
appeared.

Several approaches have been used to estimate MDL  estima-
tor using chemometrics [11,13,14].  Lorber was one of the first to
calculate a MDL, starting from the definition of net analyte signal
[15]. Subsequently, Lorber and Kowalski defined MDL  estimator as
a function of the confidence intervals associated with the predicted
concentration [16]. Bauer et al. obtained an estimator that is a func-

tion of the error in the predicted concentration with the theory of
error propagation [17]. Finally, for multivariate inverse calibration
models, Boque et al. proposed a method for calculating MDL  in the
concentration domain of calibration model [18].

dx.doi.org/10.1016/j.jpba.2012.12.026
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:shixinyuan01@163.com
mailto:yjqiao@263.net
dx.doi.org/10.1016/j.jpba.2012.12.026
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Nevertheless, presently, there is no study to report the pre-
iction performance of on-line NIR model with MDL parameter.
t the same time, no literature has investigated the MDL  of NIR
nalysis when complex herbal medicine system is involved. This
rticle deals with the on-line NIR application in extraction process
f Lonicera japonica. NIR spectroscopy, using a flange and two fiber
ptic probes, was applied to monitor the concentration of chloro-
enic acid during the extraction process.

Calibrations of NIR data are often made by the partial least
quares regression (PLS). Due to the fact that some variables, which
re not related to the concentration of chlorogenic acid, might
lso be contained in PLS mode, the reliability of prediction results
ould be questionable. With theoretical and experimental evidence,
pectral region selection has been recognized to have signifi-
ant influence on model performance. Selection methods include
ome classical approaches [19], e.g. manual approach (knowl-
dge based selection); sophisticated methods, e.g. uninformative
ariable elimination (UVE); elaborate search-based strategies, e.g.
rtificial neural networks (ANN) and genetic algorithms (GAs); and
nterval base algorithms, e.g. interval partial least squares (iPLS)
20], windows PLS and iterative PLS.

For iPLS model, an interval base algorithm for variables selec-
ion, Chen et al. investigated the total flavone content in snow lotus
sing NIR [21]; Shi et al. established a quantitative method for total
avonoids content in fresh Ginkgo biloba leaf with different col-
rs using NIR [22]. In this work, the optimal iPLS model was  also
mployed to predict the concentration of chlorogenic acid in real-
ime analysis. Furthermore, to highlight the accuracy of chemical
nformation, the spectral region provided by iPLS model was  vali-
ated by the assignment of band using deuterated solvent method.
inally, MDL  result was obtained based on the on-line PLS and iPLS
odel to assess the detection capability of substances in low con-

entrations.

. Materials and methods

.1. Materials

L. japonica was purchased from Yabao Beizhongda Pharmaceu-
ical Co., Ltd. (Beijing, China), and deposited in the Key Laboratory
f TCM-information Engineering of State Administration of Tradi-
ional Chinese Medicine (No. 120322, No. 120401). Chlorogenic acid
eference standard (lot number: 110777-201005) was supplied by
he National Institute for the Control of Pharmaceutical and Biolog-
cal Products (Beijing, China). HPLC grade methanol was  purchased
rom Tedia (USA). Deionized water was purified by Milli-Q water
ystem (Millipore Corp., Bedford, MA,  USA).

.2. Extraction process and sampling

Extraction of L. japonica was carried out in a 100 L extractor,
hich was located at a pilot-scale lab (Pharmaceutical Engineer-

ng and New Drug Development of TCM of Ministry of Education,
hina). 3 kg of the L. japonica was soaked in 30 kg of water at room
emperature for 30 min, and then heated to 100 ◦C for 30 min. The
hole extraction process took about 1 h to complete. During the
hole extraction process, stirring paddle was kept running at a

peed of 50 rpm.
During the extraction process, NIR spectra of extracts were col-

ected on-line. 5 mL  samples were also taken by a sample cup at
egular intervals, and analyzed with the same parameters by HPLC

ssays. In order to obtain similar prediction accuracy and trend of
arious concentrations, it was necessary to ensure uniform distri-
ution of samples. Hence, samples were collected at 5 min  interval

n the soaking process, and at 3 min  interval in the heating process.
 Biomedical Analysis 77 (2013) 16– 20 17

In this study, 60 samples were obtained in whole extraction pro-
cess (Batch A), which were used as a calibration set for the model
development. New data provided by the second extraction process
were performed for the external validation of the models (Batch B).

2.3. NIR equipment and software

The on-line NIR spectra were collected by two fiber optic probes,
which were designed to transmit NIR radiation by a 2 mm optical
path flange that was  connected to a XDS process analyzer (Foss
NIR Systems, Silver Spring, MD,  USA). Each spectrum was  the aver-
age of 32 scans with a wavelength increment of 0.5 nm.  The range
of spectra was from 800 nm to 2200 nm.  On-line NIR spectra have
been found to be susceptible to air bubble, solid impurities, tem-
perature, etc. [23,24].  To avoid the influence of solid impurities, the
liquids need to pass through a 100 �m strainer before entering the
optical path flange.

Data analysis was performed with the VISION software (Foss
NIR Systems, Silver Spring, MD,  USA) and home-made routines pro-
grammed in MATLAB code (MATLAB v 7.0, The MathWorks, MA).
The toolbox of iPLS model used to select the most informative vari-
ables was downloaded from http://www.models.kvl.dk/.

2.4. HPLC methods

Chromatographic analysis was  primarily performed by an SHI-
MADZU HPLC apparatus, which was comprised of a LC-20AT
system, an auto-sampler, a column temperature controller and
a diode-array detector (DAD) (SHIMADZU Corporation, Japan).
Samples were primarily separated on a Sunfire-C18 column
(150 mm × 4.6 mm;  5 �m particles, Waters Columns, USA) at 30 ◦C
using acetonitrile and water containing 0.4% phosphoric acid (13:
87, v/v) as mobile phase. The detection wavelength was set to
327 nm.

3. MDL  theory

The theory of MDL  used in this article is briefly described
as below. A more detailed description and the process used to
derive the mathematical equations can be found in the references
[11,25,26]. This section consists of four subsections: (1) calibration
models; (2) detection limits for linear calibration (against type I
error); (3) detection limits for linear calibration (against both type
I and type II error); (4) MDL  for multivariate calibration model
(against both type I and type II error).

3.1. Calibration models

A model of observed response Y is necessary to formulate the
detection capability and its behavior in repeated applications based
on the analyte concentration X. Here we  assume that when X = x

Yx = a + bx + ε (1)

where ε is normally distributed with mean zero and variance �2

for all x. Observational errors in determinations of Yx are assumed
to be independent.

Under the distributional hypothesis that has been assumed,
the estimated ŷ, at a concentration x of analyte, is a Student’s

t-distribution with (n − 2) degrees of freedom, whose mean and
variance are

E(ŷ) = â  + b̂x and Var (ŷ) = ω2
x �̂2 (2)

http://www.models.kvl.dk/
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The ωx is defined as:

2
x = 1

r
+ 1

n
+ (x  − x̄)2∑n

i=1(xi − x̄)2
(3)

here r is the number of measurements on a calibration sample,
nd �̂ is the standard deviation of regression.

ˆ 2 =
∑I

I=1(yi − ŷ)2

I − 2
(4)

.2. Detection limits for linear calibration (against type I error)

For mathematical Eq. (1),  traditional techniques for determining
etection limits have only been concerned with providing protec-
ion against type I errors or false positive conclusions.

 = pr
{

Y > yp/x = 0
}

(5)

here yp is a threshold value of the response variable.
With the hypothesis of Eq. (1) it follows that the distribution of

 false positive is a Student t, with (n − 2) degrees of freedom, mean
ˆ0 = â,  and variance ω2

0�̂2. Thus, Eq. (4) allows one to determine yp

or the significance level ˛

p = â +  ω0�̂t˛ (6)

here t˛ is the one-sided threshold value of a Student’s t with n − 2
egrees of freedom at level ˛.

.3. Detection limits for linear calibration (against both type I
nd type II error)

Furthermore, it is apparent that the false negative rate can be
omputed by any x > 0.

 = pr
{

Y ≤ yp/x > 0
}

(7)

 is a function of x, that is, it depends on how much the true con-
entration x differs from the null concentration (y0).

 = pr
{

Y − â > ω0�̂t˛/x = 0
}

= pr

{
Y − ŷ0

ω0�̂
> t˛

}

= pr
{

t(�) > t˛

}
(8)

here t(�) is a non-central Student’s t-distribution with (n − 2)
egrees of freedom, an estimated mean ŷ0 and a parameter of non-
entrality � which is a function of  ̨ and ˇ

(˛,ˇ) = Y − ŷ0

ω0�̂
(9)

.4. MDL  for multivariate calibration model (against both type I
nd type II error)

The MDL  can be calculated easily from Eqs. (1) and (9).

d = �(˛,ˇ)ω0�̂

b̂
(10)

When applying a multi-way calibration model (principal com-
onents regression (PCR), PLS), MDL  is defined as a function of the
ariance of the concentration predicted by the model [27]:

DLK = �(˛,ˇ) Var (x0, k)1/2 (11)
here Var(x0, k) is defined as estimated variance at ‘zero concen-
ration level’:

(1 + h) MSEC − �2
c

]
(12)
 Biomedical Analysis 77 (2013) 16– 20

h is the leverage of the sample in the calibration space; �c
2 is the

variance of the concentrations in the reference method; MSEC is
the mean square error of calibration.

Therefore, when we consider the false positive and false nega-
tive errors, the MDL  of on-line NIR model can be obtained.

4. Results and discussion

4.1. Quantitative analysis of chlorogenic acid by HPLC method

HPLC method adopted to determine chlorogenic acid content
in L. japonica was  carried out as guided in Chinese Pharmacopoeia
(ChP) [28]. Supplementary data show typical HPLC chromatograms
of extration solution. The retention time of the chlorogenic acid
in the sample solution was the same as reference standard solu-
tion. The calibration curve of the HPLC method was  drawn before
actual sample analysis. The calibration curve exhibited good linear-
ity (Y = 115418.46 X–6984.37, R2 = 0.9999) within the content range
(7.92 × 10−2 �g–0.792 �g).

4.2. Comparison of different spectral pretreatment methods

The raw NIR spectra of sample solutions were also shown
in supplementary data. As we  can see in the raw spectra, large
fluctuations appeared in the region of combinations and first
combination overtone for NIR spectra. Furthermore, the result of
spectral preprocessing treatments showed that noise significantly
affected the region of combinations (Supplementary data). There-
fore, to improve the accuracy of PLS model, the spectral region of
800–1900 nm was  selected in follow analysis.

For PLS model, it is generally known that the number of latent
factors is a critical parameter. The optimum number of latent fac-
tors is determined by the lowest RMSECV (root mean squared error
of cross-validation, a segment size of five) and RMSEP (root mean
square errors of prediction). Table 1 shows the model performance
for determining chlorogenic acid contents vs. different spectral
preprocessing methods. The results indicated that the calibration
model constructed with raw spectra exhibited the best perfor-
mance. The calibration gave RMSECV and R2 value of 0.048 mg/mL
and 0.9313, respectively. In the validation process, the RMSEP and
R2 were 0.101 mg/mL  and 0.9431, respectively.

4.3. Variable selection using iPLS model

Variable selection emerges as a critical step to improve model
performance, as it allows interactive improvement of data quality
during the calibration procedure. The goal of variable selection is to
identify a subset of spectral frequencies which produce the small-
est possible errors in quantitative determinations. The iPLS model
was developed on spectral subintervals of equal width, and the pre-
diction performance of these local models was  compared with the
global (full-spectrum) model. The comparison was mainly based on
the RMSECV parameter [29].

The data set of full-spectrum was  splited into different intervals.
The optimal interval numbers were selected according to the low-
est RMSECV. The results showed that 10 equidistant subintervals
were the best choice. The bar plots of Fig. 1 indicated that interval
number 7 (1640–1779.5 nm)  with 6 latent variables produced mod-
els with better performance than the full-spectrum model with 8
latent variables.

The characteristic second derivative spectra of chlorogenic acid

were assigned by deuterated DMSO solutions. According to Fig. 2,
the characteristic absorbance of 1650–1800 nm was assigned for
the chlorogenic acid. This band was consistent with the interval
number 7 from iPLS model. The result demonstrated that variable
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Table 1
The result for PLS model with different pre-processing methods.

Pretreatment Latent factors Calibration set Validation set Prediction set

R2 RMSEC R2 RMSECV R2 RMSEP

Raw 6 0.9861 0.048 0.9313 0.048 0.9431 0.101
1D  4 0.9624 0.079 0.2674 0.364 0.3171 0.466
2D  3 0.9215 0.115 0.3318 0.341 0.4222 0.325
SG 3 0.8555 0.156 0.3254 0.325 0.3023 0.350
SNV 5  0.9835 0.053 0.9255 0.115 0.9423 0.101
Mean  center 6 0.9861 0.048 0.9294 0.048 0.9398 0.107

aRaw: raw spectra, 1D: first derivative, 2D: second derivative, SG: Savitzky–Golay, SNV: standardizing normalization vector

Table 2
MDL  obtained from PLS model and iPLS model for different error types (mg/mL).

Method �0.1,0.1 �0.1,0.05 �0.1,0.01 �0.05,0.1 �0.05,0.05 �0.05,0.01 �0.01,0.1 �0.01,0.05 �0.01,0.01

PLS 0.028 0.032 0.039 0.032 0.036 0.044 0.040 0.044 0.052
iPLS  0.011 0.013 0.015 0.013 0.014 0.017 0.016 0.017 0.020
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Fig. 1. Cross-validated prediction errors (RMSECV) for 10 interval models
(bars) and full-spectrum model (red dotted line) versus interval num-
ber  for 1–6 latent variables of the localized models and 8 latent vari-
ables of the global model. The interval represents different wavelength
ranges (“1”, 800–939.5 nm;  “2”, 940–1079.5 nm; “3”, 1080–1219.5 nm;  “4”,
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election using iPLS model was accurate, and could be used for
xtracting chemical information of chlorogenic acid.

.4. Model performance and MDL

Fig. 3 illustrates the calibration and prediction regressions for
LS model and iPLS model. Implementation of variable selection

howed the improvement of model performance, for the RMSEP
f iPLS model (0.068 mg/mL) turned out to be smaller than that of
LS model (0.111 mg/mL), while the R2 parameter of iPLS model
0.9801) was higher than that of PLS model (0.9434).
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Fig. 2. NIR band assignments of chlorogenic acid compound in deuterated solution.
Once each on-line model was obtained from Fig. 3, MDL  was
calculated using Eq. (11). Besides investigating whether or not the
chlorogenic acid can be detected, measures should also be taken
to prevent false positive (probability of type I error, ˛) and false
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egative (probability of type II error, ˇ) errors. Table 2 shows that
DL  result depended on the range of concentration and the type of

rrors, and iPLS model enjoyed better accuracy performance than
LS model. Secondly, for a calibration set ranging from 0.2 mg/mL
o 2 mg/mL  (w/w), its MDL  of on-line iPLS model was  14 ppm when
aking into account both error  ̨ (0.05) and error  ̌ (0.05) (target
cceptance criteria, 2% (bulk drug), 5% (dosage form) and 15% (bio-
nalysis)). The results showed that liquids with chlorogenic acid
ontent of 14 ppm could be reliably detected by NIR (with proper
uality prediction parameters).

. Conclusion

According to the MDL  result, on-line NIR spectroscppy is a
romising technology for detection of low-concentration analyte
nd it should be highly recommended. The fiber optic probes
llowed on-line process monitoring of the extracts passing through
he flange. The on-line NIR calibration models developed were suc-
essfully applied to monitor the extraction process of L. japonica in
eal-time. According to the results obtained in this work, NIR spec-
roscopy allowed detection of minor analytes (MDL around 14 ppm)
nd can be applied, with success, to the quality control of L. japonica.

Given the promising results reported herein, further work
hould be carried out to adopt on-line NIRS technology in manufac-
uring processes and develop sound methods for rapid detecting of
PI in CHM.
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