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Abstract—A method based on an assembly of two metrics, 
including the variable importance in projection (VIP) and the 
PLS regression coefficients B, was developed for wavelength 
selection in multivariate calibration of spectral data. The 
proposed algorithm termed VIP-CARS combined the two 
metrics in a sequential and iterative manner, rather than directly 
introducing VIP into CARS-PLS. This approach is particularly 
attractive for quantification due to its relatively higher 
reproducibility and robustness compared to the CARS 
procedure. The method was tested on datasets taken from the 
corn and Rukuaixiao Tablets. It was shown that a small number 
of well-defined relevant spectral variables were identified with 
the proposed approach, providing easy spectral interpretation 
and high creditability. Moreover, with the implementation of the 
VIP-CARS algorithm, the prediction performance of the final 
model and the reproducibility of the selected wavelengths were 
also improved.  
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I.  INTRODUCTION  
Vibrational spectra, which consisted of overlapping 

absorption bands, interference from diffuse light scatter, and 
instrumental noise are usually of high co-linearity [1, 2]. 
Examples of methodologies giving such complex spectra are 
near-infrared (NIR) spectroscopy, Raman spectroscopy and 
Nuclear Magnetic Resonance (NMR) spectroscopy. Typically, 
the established multivariate calibration model includes all the 
measured wavelengths. Viewed from a statistical or data 
analysis perspective, it is really difficult for analytical 
chemists, even experienced spectroscopists, to determine 
which wavelengths or combinations should be kept in 
calibration models [3].Therefore, variable selection methods 
designed to decrease the aforementioned confusions have 
drawn considerable attention in quantitative analysis. In the 
last decade, dozens of inspired techniques appeared on the 
subject. With well selected variables, more efficient 
quantitative models can be built, and that may result in 
significantly reduced computation time, enhanced 
interpretability and increased robustness.  

Methods for variable/wavelength selection can be 
categorized into two distinctive groups [3, 4]: 1) one is 

designed to identify the most contributive individual 
wavelengths or their combinations, and 2) the other is aimed at 
selecting the most informative spectral intervals or their 
assemblages. The variable selection criteria are based on the 
statistics related to the model’s performance, e.g. RMSECV 
[5-7], RPD [8, 9], or a particular predefined function. The 
individual wavelength methods rank the contribution of the 
individual wavelengths according to one or several metrics, 
directly or indirectly evaluating the prediction performance of 
the calibration model, and then setting a cutoff criterion to 
segment informative/uninformative variables. The metrics 
used for ranking variables are the PLS weight vector W [10] , 
the absolute value of the partial least square (PLS) regression 
coefficients B [1, 11, 12], the posterior probability of the 
Bayesian method, the variable importance on the projection 
VIP [1, 12], or a combination of these metrics [13]. The cutoff 
criteria used are determined either based on prior knowledge, 
or through statistical analysis of uncertainties in the parameters 
using the Monte Carlo, the Bootstrap, or the Jackknife re-
sampling methods. The best combination of these spectral 
wavelengths was found by Hongdong Li et al. [4] using 
competitive adaptive reweighted sampling (CARS) method. 
Heuristic search methods, such as the Genetic algorithm (GA) 
[14, 15], Generalized Simulated Annealing [16, 17] (GSA), ant 
colony optimization (ACO) [18] were applied to identify the 
wavelengths most relevant to one or several analytes in the 
samples.  

The interval methods, on the other hand, aim at selecting 
the most informative spectral bands/intervals. Essentially, 
intervals are consecutive wavelengths obtained by splitting the 
spectra into a certain number of units or through iterative 
construction of these units using, for example, moving 
windows. The most informative intervals are also assessed by 
using various metrics and some cutoff strategies. Intervals 
Partial Least Square (iPLS), one of such interval approaches, 
was proposed by Nørgaard et al. [19]. The spectra was first 
divided into a certain number of equal width intervals, and 
then a local PLS model was built on each interval. The model 
showing the best prediction performance was chosen as the 
final PLS model. Synergy interval PLS [9] was investigated 
for finding the combination of spectral intervals which leads to 
the best PLS model. Bootstrap-VIP [20], on the other hand, 
was proposed as a method for searching the lower boundary on 
the number of wavelength intervals. Furthermore, the best 
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combination of spectral intervals was found by Xu et al. [21], 
using Monte Carlo Cross Validation (MCCV) stacked 
regression. 

Generally, most of these methods are computationally less 
intensive, since they are not formulated as exhaustive search 
approaches. However, it is argued that the interpretation is still 
limited, since the variables selected by certain methods are not 
consistent or sensitive to noise variables [3, 22].  

In this paper, a variable selection method, termed VIP-
CARS, was proposed to improve the reproducibility of 
selected wavelengths for PLS regression models. It consists of 
selecting the variables whose VIP score is significantly greater 
than a predefined cutoff value and identifying the most 
relevant wavelengths existing in the reduced data. Removing 
irrelevant wavelengths prior to modeling is not only interesting 
from a predictive point of view, but may also help in 
accelerating the computing speed. Furthermore, the randomly 
selected wavelengths are reduced compared with those 
obtained by CARS. This phenomenon was shortly discussed in 
section 4.2. After the proposed approach was applied to two 
datasets, corn and Rukuaixiao Tablet, more consistent and 
efficient calibration models were obtained. 

II. METHODS 

2.1 Notations 
Matrices are represented by bold capital letters, vectors by 

bold lowercase letters, and scalars by italic characters. The 
superscript t denotes matrix and vector transpose. The matrix 
of instrumental responses is denoted by X (n×p), where n and 
p indicate the number of samples and variables/wavelengths, 
respectively. The measured property is denoted by y (n×1). 

2.2 PLS and variable importance on the projection (VIP) 
The template is used to format your paper and style the 

text. All margins, column widths, line spaces, and text fonts 
are prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

Considering the case of one single response y and p 
variables, the structure of the PLS calibration model with h 
latent variables can be expressed as follows: 

 

                                         X = TPt+ E                                   (1) 

                                           y = Tb + f                                    (2) 

                                          T = XW*                                     (3) 

                                    W* = W(PtW)-1                                (4) 

Equation. (1-4), X(n×p), T(n×h), P(p×h), y(n×1) and 
b(h×1) respectively represent the predictor matrix(e.g. the 
instrumental responses), X scores, X loadings, the measured 
responses, and regression coefficients of T. The kth element of 
column vector of b explains the relationship between response 
y and tk, the kth column vector of T. Meanwhile, E (n×p) and f 
(n×1) respectively stand for random errors of X and y. PLS-
weights W (p×h) are obtained to make ||f|| (Euclidian norm) as 
small as possible [1]. Cross-validation using ten random 
subsets was generally used to select the number of PLS 
component (h).  

The VIP score of a prediction model is a summary of the 
importance of the projections to h latent variables. The score 
for the kth variable/wavelengths can be calculated by (5). On 
the other hand, the average of squared VIP scores equals 1, the 
“greater than one rule” is generally used as a criterion for 
variable selection [1, 23].  
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where k=1,2,…,h,; p is the number of columns of X; wjk is 
the loading weight of the jth variable in the kth component; bk, 
tk, and wk are the kth elements or vectors of b, T, W 
respectively. 

2.3 Bootstrap-VIP approach 
Bootstrap-VIP was first designed to but not limited to 

select wavelength intervals in spectral imaging applications. 
The Bootstrap algorithm was used to assess the importance of 
each wavelength on the predictions of sample quality. 
Similarly to Monte Carlo simulations, the dataset is randomly 
re-sampled N times with replacement. During each loop, the 
PLS-Bootstrap algorithm was used to select wavelength based 
on the variable importance of the projection metric (VIP). In 
order to ensure that stable bootstrap uncertainty intervals were 
obtained, re-sampling of 500 [20] times was used. The typical 
greater-than-one rule was adopted to filter uninformative 
wavelengths. Given the uncertainty in the VIP metrics, a 
wavelength was considered relevant when its average VIP 
value, along with its one standard deviation error bar (obtained 
from the bootstrap),was above 1.0 . 

2.4 Competitive adaptive reweighted sampling (CARS) 
CARS was proposed to select the most relevant 

combination of variables (or wavelengths) during a successive 
selecting procedure. Based on the regression coefficients 
obtained by the PLS model, CARS iteratively selects N subsets 
of variables from N Monte Carlo (MC) sampling processes. 
During each process, fixed ratios of samples are randomly 
selected to establish a calibration model. Next, with the 
regression coefficients obtained, a two-step variable selection 
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procedure is adopted to select the relevant wavelengths. 
Finally, cross validation is used to choose the subset (the most 
relevant combination of wavelengths) showing the lowest root 
mean square error [4] .The method proceeds as follows: 

Step 1: MC sampling 

Randomly select k samples (Xi,yi), i stands for the ith loop. 

Build a PLS model based on the dominating variables 
Vsel_old , then, record the regression coefficients beta: 

                                       beta = W*b                                     (7) 

Step 2: Sort the variables in a descending order according 
to the absolute value of their regression coefficients. Update 
the ratio of variables to be kept. 

                                           ri= ae-ki                                       (8) 

where, 

                                        
1/ ( 1)( )

2
Npa −=

                                  (9) 

                                        
l )

1
 n( 2 /pk

N
=

−                                 (10) 

ln denotes the natural logarithm, N represents the Nth 
sampling process. 

The exponent function’s trace in Step 2 decreases rapidly 
in the first stage, whereas in the second stage, the trace 
progresses gently. This will facilitate the selection process [4]. 

Step 3: Condense current dataset to have p×ri variables. 
Then draw a subset of variables from the retained p×ri 
variables using adaptively reweighted sampling method, 
according to a normalized weight wi. 

                          1
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i p
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=
∑  , i= 1, 2, 3..., p                 (11) 

Essentially, adaptively reweighted sampling method in 
Step 3 is a weighted sampling algorithm. The variables with 
larger weights will be selected with higher frequency, and this 
will accelerate the selection process. 

Step 4: Compute RMSECV using Vsel_new .Then 
Vsel_old = Vsel_new 

Step 5: Let i=i+1. If i<N return to step 1, else continue. 

Step 6: Choose the subset with the minimum RMSECV as 
optimal combination of variables/wavelengths and build the 
final calibration model. 

2.5 The VIP-CARS method 
The VIP-CARS approach consists of removing irrelevant 

wavelengths using Bootstrap-VIP first and then identifying the 
best combination of wavelengths by CARS. Details of the 
VIP-CARS procedure are provided below. 

Firstly, the VIP scores of each wavelength are calculated 
on the PLS model constructed using the dataset re-sampled by 
Bootstrap algorithm. Then, the wavelengths with VIP scores 
lower than a predefined threshold are removed. Next, the 
regression coefficients beta (7) are estimated with k samples 
(Xi,yi) randomly selected from the reduced dataset. According 
to the updated ratio ri and weight wi (8-11), a subset of 
variables can then be drawn from the retained p×ri variables 
using adaptively reweighted sampling method. The 
aforementioned sophisticated selection procedures, viz. step 1 
to 4 of CARS in section 2.4, are repeated for N times. 
Ultimately, the calibration model is built on the wavelengths 
whose combination shows the minimum RMSECV. 

Since the VIP threshold would naturally affect the final 
selected wavelengths, and it was indicated that the cutoff 
criterion should be a function of the data structure [1], 
therefore 10 cutoff points linearly spaced between and 
including 0.83 and 1.21 were investigated in this study. 

III. EXPERIMENTAL 
Two datasets were employed in this study to investigate the 

performance of the proposed method. One experiment was the 
protein content in corn and the other was the thickness of 
coating layer for Rukuaixiao Tablet. Without extra description, 
each dataset was mean-centered prior to further investigation. 

3.1 Corn dataset  
The data set [24] consisted of 80 NIR spectra, each 

corresponding to an independent corn sample, covering the 
spectral range 1100-2498 nm at 2 nm intervals. The spectral 
data set measured on m5 instrument and the protein content 
was used to assess the performance of the previous mentioned 
methods. The original spectra of the corn data is shown in Fig. 
1 (a). The Bootstrap-VIP, VIP-CARS and CARS algorithms as 
well as the traditional PLS methods were performed on this 
data for comparison. 

3.2 Rukuaixiao Tablet data set 
The data set contained a total of 104 NIR spectra of 104 

coated tablets from 3 production batches at seven sampling 
points (3 tablets per point) and a batch of authorized tablets, 
which were kindly supplied by Pharmaceutical factory of 
Beijing University of Chinese Medicine. The NIR spectra of 
the samples were collected at 4 cm-1 interval over the spectral 
range 4000-10,000 cm-1 with an Antaris FT-NIR System 
(Thermo scientific, Madison, USA) equipped with an 
integrating sphere system. Each sample was analyzed in 
sextuplet, with spectra obtained by averaging 32 scans and 
equilibrated at 25 0C for 10 min before scanning. The thickness 
of the coating layer was measured by a caliper. The raw 
spectra of the Rukuaixiao Tablet data are plotted in Fig. 1(b). 
The 104×1557 data matrix was adopted to compare the 
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prediction power of the aforementioned methods. Furthermore, 
the Rukuaixiao Tablet dataset was also used to test the 
robustness and the reproducibility of both CARS and VIP-
CARS algorithms. 

Figure 1.  The raw NIR spectra of corn dataset (a) and Rukuaixiao 
Rukuaixiao Tablet dataset (b).  

All calculations were performed on a personal computer i7 
880 processor with 6GB RAM under the Win7 Professional 
operating system using Matlab 7.9 (Mathworks, Inc., Natick, 
MA). The Bootstrap-VIP routines were implementations of 
well-established algorithms. The CARS and VIP-CARS 
algorithms were obtained from or modifications of functions in 
the CARS toolbox (http://code.google.com/p/carspls/).  

IV. RESULTS AND DISCUSSIONS 

4.1 Parameter setup 
There are certain numbers of critical parameters that 

needed to be optimized, including the re-sampling times, 
cutoff value, etc. The RMSECV curves of the PLS calibration 
models for the Corn protein and Rukuaixiao Tablet datasets 
were found to level off around 10 and 5 LVs, respectively. 
Therefore, in order to compare with the full spectrum PLS, the 
upper limit of the number of latent variables was set to 10 on 
the corn protein dataset and 5 on the Rukuaixiao Tablet 
dataset, for both CARS and VIP-CARS approaches. In the 
VIP-CARS procedure, Bootstrap re-sampling 50 times was 
found to yield very consistent results. The optimizations of the 
other parameters are discussed at large in the following 
sections. 

4.1.1 Cutoff values of the VIP-CARS method 
The cutoff value of zero to be used is not absolute to assess 

the significance of regression coefficient. In fact, it has been 
suggested that a proper cutoff value may vary between 0.8 and 
1.2 [1]. Cutoff values, linearly spaced between and including 
0.83 and 1.21, were considered in this section to explore the 
impact of the VIP thresholds on the proposed VIP-CARS 
approach. For each threshold, 100 times Monte Carlo re-
sampling and 500 re-duplicate running of VIP-CARS were 

executed on each dataset and the RMSECV values were 
recorded. Such a large number of subsets and repeated runs 
were selected to ensure that a stable result can be obtained on 
each dataset. A comparison is provided in Fig. 2 between the 
VIP-CARS selection with a threshold of 1.0 and the other 
cutoff values. Even if the parameters of CARS procedure were 
fixed, minimizing RMSECV is still a 2-dimensional 
optimization problem which requires selecting both the 
number of latent variables of the reduced model and the 
optimal VIP cutoff. To investigate the impact of VIP 
thresholds on selected wavelengths, the number of latent 
variables for the pre-selection step (Bootstrap-VIP) was kept 
the same.  

Figure 2.   The box-plots of VIP-CARS for each dataset with the cutoff value 
0.8300, 0.8722, 0.9144, 0.9567, 0.9989, 1.0411, 1.0833, 1.1256, 1.1678, 1.21, 
respectively. The selection process was executed for 500 times on each cutoff 

value. 

The results presented in Fig. 2 show that the optimal VIP 
cutoff values vary between 0.8 and 1.2, providing marginal 
improvements on RMSECV values compared to the 1.0 
threshold. These observations indicate that a VIP cutoff value 
of 1.0 is a good starting point, but can later be fine-tuned if 
necessary. The cutoff value in this study was set to 0.83 on 
corn and 0.91 on Rukuaixiao Tablet, based on the RMSECV 
and its variance at different cutoff values.  

The dependence of the VIP cutoff on the scaling of spectral 
data needs to be further investigated. The greater-than-one rule 
has a particular meaning for autoscaled data, which may not 
hold for other scaling techniques [20]. However, after 
preparing the analysis of datasets using mean-centering only, it 
was found that the VIP =1.0 threshold was still a good initial 
value (RMSECV = 0.0703 on corn). Similar results were 
obtained in terms of both the predictive power and the selected 
spectral ranges. 

4.1.2 The size of calibration subset and the number of Monte 
Carlo re-sampling runs 

There are two other parameters required to be investigated, 
i.e. the randomly selected k samples, and the N Monte Carlo 
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sampling runs. With the purpose of finding out the adapted 
model for the data set, the VIP-CARS was used in different 
cases as N = 50, 100, 200, 500 and k = 0.5n, 0.6n, 0.7n, 0.8n, 
0.9n, n (n, the size of the dataset). In order to gain a statistical 
perspective of the proposed method, the VIP-CARS procedure 
was repeated for 500 times. 

The root-mean-square errors of 10 fold cross-validation 
(RMSECVs) for VIP-CARS in all cases, together with their 
variances are shown in Table 1. It can be seen from the table 
that both the value of N and k have certain influence on the 
RMSECVs calculated by the VIP-CARS procedure. The 

RMSECVs calculated on corn data set decrease gradually as 
the number of re-sampling runs increase from 50 to 500. But 
as for the Rukuaixiao Tablet data set, this does not present 
much variation except for the expected standard deviation of 
RMSECV. It should further be noted that the re-sampling 
operation of CARS is different from that of Bootstrap-VIP 
since larger values of Bootstrap re-sampling times efficiently 
treat unbalanced and non-smooth subsets at the expense of 
increased computation time [20]. But that is not the case with 
CARS. Larger values of Monte Carlo re-sampling times affect 
the exponent function mostly in Step 2 of the CARS algorithm. 

 

TABLE I.  THE MEAN AND STANDARD DEVIATION OF RMSECV OBTAINED BY VIP-CARS WITH DIFFERENT N AND K FOR DATA SETS CORN PROTEIN AND 
RUKUAIXIAO TABLET. 

 k=0.5n k=0.6n k=0.7n k=0.8n k=0.9n k=n 
Corn       

N=50 0.0720±0.0069 0.0728±0.0058 0.0728±0.0051 0.0720±0.0053 0.0717±0.0050 0.0701±0.0043 

N=100 0.0732±0.0058 0.0720±0.0049 0.0712±0.0057 0.0700±0.0049 0.0703±0.0045 0.0698±0.0047 

N=200 0.0726±0.0064 0.0705±0.0063 0.0702±0.0055 0.0699±0.0052 0.0695±0.0050 0.0703±0.0043 

N=500 0.0725±0.0062 0.0711±0.0059 0.0701±0.0058 0.0692±0.0058 0.0692±0.0049 0.0701±0.0050 

Rukuaixiao       
N=50 0.0293±0.0003 0.0292±0.0002 0.0292±0.0002 0.0292±0.0002 0.0292±0.0002 0.0293±0.0002

N=100 0.0292±0.0002 0.0292±0.0002 0.0292±0.0002 0.0293±0.0001 0.0293±0.0001 0.0293±0.0001

N=200 0.0292±0.0002 0.0292±0.0002 0.0293±0.0002 0.0293±0.0001 0.0293±0.0001 0.0293±0.0001

N=500 0.0292±0.0002 0.0292±0.0002 0.0293±0.0002 0.0293±0.0001 0.0293±0.0001 0.0293±0.0001

 

As the size of calibration subsets vary from 0.5n to n, the 
decreasing trend of RMSECV becomes clear. The RMSECV 
reaches its minimum at k=0.8n and 0.9n. Therefore, a size of 
0.9n, which was adopted in the original CARS methods, is a 
good initial point for both data. In the following study, the 
number of MC sampling runs was set to 500 

4.2 Comparision of the variables selected by CARS and VIP-
CARS 

One objective of this study was to further indicate that 
stability of the proposed methods would lead to the 
identification of reproducible, rather than occasional, relevant 
variables. Given the reproducibility of the wavelengths 
selected, they can not only be used by spectroscopists, but 
additionally, their interpretation becomes easier compared with 
the result obtained by the full spectrum PLS. In order to 
inspect in detail the uncertainty caused by the Monte Carlo 
sampling, the methods were repeated for 500 times on the two 
datasets, and the resulting wavelengths were recorded. The 
results obtained on the two distinct datasets can be used to 
illustrate whether the results obtained with the proposed 
approaches, and the comparison studies with other methods, 

yield consistent conclusions across different properties and 
data structures. 

 

Figure 3.  The frequency of each wavelength selected by running CARS and 
VIP-CARS 500 times for corn data set. 
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Figure 4.  The frequency of selected wavenumbers by appling CARS and 
VIP-CARS 500 times on Rukuaixiao data set.  

The specific wavelengths selected by CARS and VIP-
CARS are shown in Fig. 3 and Fig. 4 for all of the two 
datasets. As is illustrated in Fig. 3, performance of each 
method is different across the data sets. The wavelengths 
selected by VIP-CARS spread across the full spectrum; 
however, only a limited part of wavelengths were selected. 
Besides, the variable-wise frequency peak of the dominant 
wavelengths may be an indication of the high complexity of 
NIR spectra. The performance of CARS approach is similar to 
VIP-CARS except that the dominant wavelengths are at 
around 1688nm. However, the results shown in Fig. 3 and Fig. 
5 illustrate that a certain number of dominant wavelength 
peaks are of higher amplitude compared with the results 
obtained by CARS, including the peaks around 1786, 2050, 
2134, and 2170 nm. Moreover, these wavelengths selected on 
the corn data can be attributed to the CONH2 and CONH2(R) 
chemical groups, which are critical features of protein 
molecules. It means that the reproducibility of the relevant 
dominant peaks selected using VIP-CARS improved 
significantly. The variables selected by CARS in Fig. 4 are 
mainly distributed in six regions. The wave numbers selected 
by both approaches, at around 7150 cm-1, are of high 
frequencies. Fig. 6 explicitly demonstrates the improvement in 
the reproducibility of the dominant peaks. The results 
presented above indicate that, compared with the results 
obtained by CARS, the reproducibility of wavelengths selected 
by VIP-CARS is significantly improved. 

The number of latent variables and wavelengths selected 
by the investigated methods, together with its RMSECV, are 
shown in Table 2. It is clear that VIP-CARS can reduce the 
number of selected wavelengths and leads to apparently 
improved prediction power compared with full spectrum PLS 
regression. Moreover, the prediction performance of VIP-
CARS on corn protein data set is far better than that of CARS. 
In addition, it should be noted that the RMSECV values of 
Bootstrap-VIP decrease significantly compared with the full 
spectrum PLS regression. That means Bootstrap-VIP is not 

only a good selection method for the interpretation phase, but 
also a reliable method to improve the predictive power.  

In general, compared to just CARS, VIP-CARS produces 
more reproducible and credible wavelengths. 

 

Figure 5.  Summary of the percentage of each variable ranked descend for 
the Corn dataset. 

 

Figure 6.  Summary of the percentage of selected wavenumbers for the 
Rukuaixiao dataset. 

V. CONCLUSIONS  
In this publication, VIP-CARS was proposed as a variable 

selection method. The performance of the proposed approach 
was evaluated by comparing the prediction ability of the 
resulting PLS model, the reproducibility of the selected 
wavelengths and the robustness to noise variable, to those 
obtained by the plain CARS. The results of application to two 
datasets indicate that more robust informative wavelengths can 
be obtained by VIP-CARS method. The impact of Monte 
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Carlo sampling on the selected wavelengths was reduced to 
some content. This means that although the VIP-CARS is 
essentially a modification of CARS, it leads to significantly 
improved wavelength reproducibility, creditability and 
robustness. Furthermore, with the implementation of the VIP-
CARS algorithm, improvement was also observed in the 
prediction performance of the final model. 

Analytical chemists will very likely benefit from the VIP-
CARS method, especially when hundreds of variables are 
involved. 

TABLE II.  THE RMSECV AND NUMBER OF RETAINED VARIABLES 
OBTAINED BY PLS, BOOTSTRAP-VIP, CARS, VIP-CARS ON BOTH CORN 

PROTEIN DATASET AND RUKUAIXIAO TABLET DATASET. 

* The median of RMSECVs are present here to provide a robust estimate on the behavior of 
investigated methods. 

A The maximum number of latent variables was set to 10. 
B The maximum number of latent variables was set to 5. 
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METHOD 

CORNA  RUKUAIXIAOB 

LVS NVAR RMSECV  LVS NVAR RMSECV 

PLS 10 700 0.1212  5 1557 0.0361 

BOOTSTRAP-
VIP 

10 274 0.0912  5 431 0.0331 

CARS 9±1 24±11 0.0723*  4±1 20±17 0.0286* 

VIP-CARS 9±1 27±8 0.0687*  4±1 18±7 0.0288* 
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